Return to search

Interfacial Characterization of Chemical Vapor Deposition (Cvd) Grown Graphene and Electrodeposited Bismuth on Ruthenium Surface

Graphene receives enormous attention owing to its distinctive physical and chemical prosperities. Growing and transferring graphene to different substrates have been investigated. The graphene growing on the copper substrate has an advantage of low solubility of carbon on the copper which allow us to grow mostly monolayer graphene. Graphene sheet of few centimeters can be transferred to 300nm silicon oxide and quartz crystal pre-deposited with metal like Cu and Ru. Characterization of the graphene has been done with Raman and contact angle measurement and recently quartz crystal microbalance (QCM) has been employed. The underpotential deposition (UPD) process of Bi on Ru metal surface is studied using electrochemical quartz crystal microbalance (EQCM) and XPS techniques. Both Bi UPD and Bi bulk deposition are clearly observed on Ru in 1mM Bi (NO3)3/0.5M H2SO4. Bi monolayer coverage calculated from mass (MLMass) and from charge (MLCharge) were compared with respect to the potential scanning rates, anions and ambient controls. EQCM results indicate that Bi UPD on Ru is mostly scan rate independent but exhibits interesting difference at the slower scan. Bi UPD monolayer coverage calculated from cathodic frequency change (ΔfCathodic) is significantly smaller than the monolayer coverage derived from integrated charge under the cathodic Bi UPD peak when scan rate is at least 5 mV/s. XPS is utilized to explore the detailed chemical composition of the observed interfacial process of Bi UPD on Ru.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc500095
Date05 1900
CreatorsAbdelghani, Jafar
ContributorsChyan, Oliver M. R., Verbeck, Guido F., Youngblood, W. Justin, Petros, Robby A.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Abdelghani, Jafar, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0016 seconds