In the study, the effect of current density and rotation speed of grinding disk on characters of Ni-Diamond composite coating are investigated. Experimental results show that current density and film thickness are almost linearly depend. When the current density is increased, the film thickness is increased, too. And it can cover diamond particles much more efficiently. The rotation speed of grinding disk is 20 rpm, the average deposition rate is approx. 2£gm/min in 5 ASD. When reduce the current density to 2.5ASD, the average deposition rate reduce to approx. 1.08£gm/min. The current density is 5 ASD, the covered area of diamond particle in Ni-Diamond composite coating is 60% when the rotation speed of grinding disk is 0rpm. Increasing the rotation speed up to 100 rpm, the covered area of diamond particle in Ni-Diamond composite coating is down to 24% because diamond particle can`t stay in the same position in a long period.
Secondary, we use composite electroplating on grinder in process to grind CVD diamond films, the effect of current density and loads on grinding characters of CVD diamond films by using the composite electroplating on grinder in process are investigated. The load is 4.2 kg, the surface roughness Ra is about 0.2 £gm when composite coating grind CVD diamond with no electroplating. But the current density is up to 2.5 ASD, Ra can down to 0.12£gm. The load is increasing to 6.3 kg, the Ra of CVD diamond films is about 0.16£gm.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0725105-160745 |
Date | 25 July 2005 |
Creators | Chen, Tai-Jia |
Contributors | R.T. Lee, Y.C. Chiou, Y.R. Jeng, J.F. Lin |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0725105-160745 |
Rights | not_available, Copyright information available at source archive |
Page generated in 0.0021 seconds