In late 2007, a perched lava channel, built up to 45 m above the preexisting surface, developed during the ongoing eruption near Pu'u 'Ō'ō cone on Kīlauea Volcano's east rift zone. The lava channel was segmented into four pools extending over a total of 1.4 km. From late October to mid-December, a cyclic behavior, consisting of steady lava level rise terminated by vigorous spattering and an abrupt drop in lava level, was commonly observed in pool 1. We use geologic observations, video, time-lapse camera images, and seismicity to characterize and understand this cyclic behavior. Spattering episodes occurred at intervals of 40-100 min during peak activity and involved small (5-10-m-high) fountains limited to the margins of the pool. Most spattering episodes had fountains which migrated downchannel. Each spattering episode was associated with a rapid lava level drop of about 1 m, which was concurrent with a conspicuous cigar-shaped tremor burst with peak frequencies of 4-5 Hz. We interpret this cyclic behavior to be gas pistoning, and this is the first documented instance of gas pistoning in lava well away from the deeper conduit. Our observations and data indicate that the gas pistoning was driven by gas accumulation beneath the visco-elastic component of the surface crust, contrary to other studies which attribute similar behavior to the periodic rise of gas slugs. The gas piston events typically had a gas mass of about 2,500 kg (similar to the explosions at Stromboli), with gas accumulation and release rates of about 1.1 and 5.7 kg s-1, respectively. The time-averaged gas output rate of the gas pistoning events accounted for about 1-2% of the total gas output rate of the east rift zone eruption.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-17682 |
Date | 01 August 2011 |
Creators | Patrick, Matthew R., Orr, Tim, Wilson, David, Dow, David, Freeman, Richard |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0022 seconds