Return to search

Rapid Prediction of Tsunamis and Storm Surges Using Machine Learning

Tsunami and storm surge are two of the main destructive and costly natural hazards faced by coastal communities around the world. To enhance coastal resilience and to develop effective risk management strategies, accurate and efficient tsunami and storm surge prediction models are needed. However, existing physics-based numerical models have the disadvantage of being difficult to satisfy both accuracy and efficiency at the same time. In this dissertation, several surrogate models are developed using statistical and machine learning techniques that can rapidly predict a tsunami and storm surge without substantial loss of accuracy, with respect to high-fidelity physics-based models. First, a tsunami run-up response function (TRRF) model is developed that can rapidly predict a tsunami run-up distribution from earthquake fault parameters. This new surrogate modeling approach reduces the number of simulations required to build a surrogate model by separately modeling the leading order contribution and the residual part of the tsunami run-up distribution. Secondly, a TRRF-based inversion (TRRF-INV) model is developed that can infer a tsunami source and its impact from tsunami run-up records. Since this new tsunami inversion model is based on the TRRF model, it can perform a large number of tsunami forward simulations in tsunami inversion modeling, which is impossible with physics-based models. And lastly, a one-dimensional convolutional neural network combined with principal component analysis and k-means clustering (C1PKNet) model is developed that can rapidly predict the peak storm surge from tropical cyclone track time series. Because the C1PKNet model uses the tropical cyclone track time series, it has the advantage of being able to predict more diverse tropical cyclone scenarios than the existing surrogate models that rely on a tropical cyclone condition at one moment (usually at or near landfall). The surrogate models developed in this dissertation have the potential to save lives, mitigate coastal hazard damage, and promote resilient coastal communities. / Doctor of Philosophy / Tsunami and storm surge can cause extensive damage to coastal communities; to reduce this damage, accurate and fast computer models are needed that can predict the water level change caused by these coastal hazards. The problem is that existing physics-based computer models are either accurate but slow or less accurate but fast. In this dissertation, three new computer models are developed using statistical and machine learning techniques that can rapidly predict a tsunami and storm surge without substantial loss of accuracy compared to the accurate physics-based computer models. Three computer models are as follows: (1) A computer model that can rapidly predict the maximum ground elevation wetted by the tsunami along the coastline from earthquake information, (2) A computer model that can reversely predict a tsunami source and its impact from the observations of the maximum ground elevation wetted by the tsunami, (3) A computer model that can rapidly predict peak storm surges across a wide range of coastal areas from the tropical cyclone's track position over time. These new computer models have the potential to improve forecasting capabilities, advance understanding of historical tsunami and storm surge events, and lead to better preparedness plans for possible future tsunamis and storm surges.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/103154
Date27 April 2021
CreatorsLee, Michael
ContributorsCivil and Environmental Engineering, Irish, Jennifer L., Weiss, Robert, Stark, Nina, Strom, Kyle Brent
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0021 seconds