Return to search

Characterization of cadmium zinc telluride solar cells [electronic resource] / by Gowri Sivaraman.

Title from PDF of title page. / Document formatted into pages; contains 70 pages. / Thesis (M.S.E.E.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: Currently thin film solar cells have efficiencies in the range of 16-18%. Higher efficiencies of 20% or more can be achieved by two junction solar cells in which two p-n junctions are connected in series one on top of the other in a tandem structure. The ideal bandgaps for optimum efficiency in a tandem structure are about 1eV for the top cell and 1.7 eV for the bottom cell. Copper Indium Gallium di-Selenide (CIGS) with a bandgap of 1 eV is a suitable candidate for the bottom cell and Cadmium Zinc Telluride (CZT) with a tunable bandgap of 1.44-2.26 eV is a suitable candidate for the top cell. This work involves characterization of cadmium zinc telluride films and solar cells prepared by close spaced sublimation. CZT is deposited by co-sublimation of CdTe and ZnTe. The process has been investigated on various wide bandgap semiconductor materials including cadmium sulphide, cadmium oxide and zinc selenide. / ABSTRACT: Different post deposition heat treatments were carried out to determine their effect on film and device properties. Characterization of the CZT devices was done using XRD, EDS, SIMS, J-V and spectral response measurements. CZT (Eg 1.7 eV) /CdS exhibited best performance when compared to the other window layers investigated. The best device exhibited Voc=640mV, FF=40% and Jsc=4.5 mA/cm2. The theoretical performance of CZT based solar cells were investigated using SCAPS. The effect of bulk and interface defects on the device parameters were studied. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.

Identiferoai:union.ndltd.org:USF/oai:palmm.fcla.edu:AJN3924SEB
Date January 2003
CreatorsSivaraman, Gowri.
PublisherUniversity of South Florida
Source SetsUniversity of South Flordia
Detected LanguageEnglish

Page generated in 0.0084 seconds