Return to search

Fourier transformation of coisotropic A-branes.

本論文給出了在鏡像對稱中對非拉格朗日A-膜的Fourier型的變換。 / SYZ構想斷言,鏡像對稱應該來自於一種在卡拉比-丘流形上逐纖維的Fourier-Mukai變換。在半平坦卡拉比-丘流形上的拉格朗日A-膜的情形下,這已經被實現。然而, Kapustin和Orlov指出,對於一些特殊的卡拉比-丘流形, A-膜範疇應該加上某些額外的物件。他們稱這些額外的物件為餘迷向A-膜。在半平坦卡拉比-丘流形的情況下,我們需要加入一些在每個纖維上是楊-米爾斯的A-膜以及B-膜。 / 我們首先推廣Nahm變換到環面上的楊-米爾斯叢。這也可以看作一種Fourier型的變換。然後我們在半平坦卡拉比-丘流形上實施逐纖維的這種Nahm變換。我們在一些半平坦卡拉比丘流形上構造了一些新的B-膜的例子。這些B-膜限制到每一個纖維環面上都是環面上的楊-米爾斯叢。並且我們驗證了在這種逐纖維的變換下,他們恰好就是Kapustin和Orlov所提出的餘迷向A 膜。 / This thesis gives the construction of Fourier type transformations in mirror symmetry for non-Lagrangian A-branes. / The SYZ proposal asserts that mirror symmetry should come from a fiberwise Fourier-Mukai transformation along torus fibrations on Calabi-Yau manifolds. This can be realized explicitly for Lagrangian A-branes in semi-flat case. However, Kapustin and Orlov pointed out that for certain Calabi-Yau manifolds some extra objects called coisotropic A-branes should be added into the category of A-branes. In semi-flat cases, we need to include A-and B-branes which are Yang-Mills along fibers. / We first generalize the Nahm transformation to Yang-Mills line bundles over tori which can also be regarded as a Fourier type transformation. Then we carry out a family version of this transformation for semi-flat Calabi-Yau manifolds. More precisely, we construct a new class of B-branes in semi-flat Calabi-Yau manifolds which are Yang-Mills line bundles when restricted to each fiber torus. And we show that this fiberwise transformation of these B-branes produce the coisotropic A-branes predicted by Kapustin and Orlov. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Zhang, Yi. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 61-62). / Abstracts also in Chinese. / Chapter 1 --- Introduction --- p.6 / Chapter 2 --- Fourier-Mukai Transformation --- p.10 / Chapter 2.1 --- A torus case --- p.10 / Chapter 2.1.1 --- Moduli space of flat U(1) bundles over T --- p.11 / Chapter 2.1.2 --- Poincare line bundle P --- p.12 / Chapter 2.1.3 --- Definition of the Fourier-Mukai Transformation for a torus --- p.13 / Chapter 2.1.4 --- Some concrete computations --- p.14 / Chapter 2.2 --- Semi-flat Calabi-Yau case --- p.15 / Chapter 2.2.1 --- Semi-flat Calabi-Yau manifolds and semi-flat branes --- p.15 / Chapter 2.2.2 --- Fourier-Mukai transformation for semi-flat branes --- p.18 / Chapter 3 --- Coisotropic A-branes --- p.23 / Chapter 3.1 --- Why Lagrangian branes are not enough? --- p.23 / Chapter 3.2 --- An example --- p.27 / Chapter 4 --- Nahm transformation --- p.29 / Chapter 4.1 --- Spinor bundle and the Dirac operator --- p.30 / Chapter 4.1.1 --- Clifford algebra and spin group --- p.30 / Chapter 4.1.2 --- Spinor bundle --- p.33 / Chapter 4.1.3 --- Dirac operator --- p.36 / Chapter 4.2 --- Nahm transformation for a torus (T, g) --- p.38 / Chapter 4.3 --- Fourier-Mukai transformation for coisotropic A-branes --- p.53

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_328602
Date January 2012
ContributorsZhang, Yi., Chinese University of Hong Kong Graduate School. Division of Mathematics.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatelectronic resource, electronic resource, remote, 1 online resource (62 leaves)
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.2602 seconds