Return to search

Calcium-related signal transduction systems in developing visual cortex

Neuronal connections in cat visual cortex are highly susceptible to visual experience at early postnatal age and thus serve as a useful model of neural plasticity. The biochemical mechanisms underlying this cortical plasticity remain unclear. In this thesis, the development of several elements in calcium-related signal transduction systems, including the type-1 muscarinic and alpha-1 adrenoceptor systems as examples of cell surface receptors and protein kinase C. calcium/calmodulin dependent kinase II and inositol 1,4,5 phosphotate receptors as second messenger targets, were investigated using the methods of immunocytochemistry and autoradiography. The results show that each receptor develops with its own time-table and laminar distribution; the various elements all culminate and display the maximal colocalization during the critical period; and, only at this age, the cortical levels of the receptors and kinases are dependent on subcortical afferents. The results suggest that cell surface receptors and their second messenger targets develop in specific temporal and spatial patterns, which may be both genetically and environmentally determined, and this specific sequence of development of the molecules for signal transduction results in a series of modifications in the morphology and physiology of the developing cortex leading to its maturation. / Medicine, Faculty of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/30927
Date January 1991
CreatorsJia, Wei-Guo
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0081 seconds