Return to search

Paradigms of inflammation : interactions between calcium-binding proteins and the receptor for advanced glycation end products (RAGE)

The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily. The result of RAGE-ligand interactions augments the proinflammatory mechanisms acting in chronic inflammatory diseases. RAGE recognises a wide range of ligands that have no apparent structural similarities. It is unclear what controls this promiscuity of RAGE. The extracellular domain of RAGE has two potential glycosylation sites. It is speculated that N-linked glycosylation may have significant impact on ligand recognition, especially of S100 calcium binding protein ligands. Two objectives of this thesis were to establish whether S100A9 acts as a ligand for RAGE and to investigate whether glycosylation of RAGE has any influence on ligand recognition. These were achieved by generating two forms of RAGE. HEK 293 cells were transfected to express full-length, membrane-bound RAGE or a secreted form comprising the extracellular domain of RAGE. Site-directed mutagenesis of RAGE showed that asparagine at position 25 is the pre-dominant N-linked glycosylation site. The carbohydrate added to asparagine 25 was further modified to a non-sialylated carboxylated N-linked glycan, specifically recognised by monoclonal antibody GB 3.1. Binding studies showed that different RAGE ligands have individual requirements for glycosylation of the receptor. Binding of AGE-modified AGE-BSA or of S100B to RAGE occured independent of N-linked glycosylation of the receptor. RAGE also binds the S100 protein, MRP-14 (S100A9). In contrast to AGE-BSA or S100B, the non-sialylated carboxylated N-glycan expressed on RAGE is crucial for binding to MRP-14. However, RAGE produced in tunicamycin containing medium and thus lacking N-linked glycosylation, shows strong binding to MRP-14. It was concluded that two forms of binding are involved: the first mechanism relies on the non-sialylated carboxylated N-glycan attached to RAGE and acts in a "tethering" fashion. The second mechanism involves a conformational change of RAGE, which results in exposure of a binding site(s) and a more conventional receptor-ligand interaction.
Another objective for this thesis is to study the expression of RAGE and its alternatively spliced variants. PCR analysis has revealed several variants of RAGE that result from alternative splicing mechanisms. The variant proteins are soluble due to a lack of membrane localising sequence. PCR results confirmed the presence of transcripts encoding for spliced variants of RAGE in several tumour cell lines. Among these were transcripts that should encode a soluble form of sRAGE 2. Furthermore, it was shown that sRAGE 2 transcript can be present in forms that contain the ligand-binding V-domain of RAGE or that are N-truncated and lack the V-domain. This is the first report of a soluble, N-truncated sRAGE 2 variant.
The results in this thesis add to our knowledge of RAGE biology. MRP-14 (S100A9) is identified as a new ligand. The control of MRP-14/RAGE interaction relies on N-linked glycosylation of the receptor and further modification of the carbohydrate. "Tethering" or stronger receptor-ligand interactions are suggested as mechanisms for controlling RAGE recognition of multiple ligands. Soluble RAGE variants that lack or contain V-domain binding regions, and hence sites for glycosylation were produced. These have the capacity to compete with membrane-bound receptor for available ligand. The control of the expression of soluble RAGE variants, in concert with the control of various modification to carbohydrate expressed on the receptor, adds a level of complexity to ligand specificity. This may ultimately result in different paradigms of the inflammatory process.

Identiferoai:union.ndltd.org:ADTP/217407
Date January 2005
CreatorsLo, Alexandra Siu Lok, n/a
PublisherUniversity of Otago. Department of Physiology
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://policy01.otago.ac.nz/policies/FMPro?-db=policies.fm&-format=viewpolicy.html&-lay=viewpolicy&-sortfield=Title&Type=Academic&-recid=33025&-find), Copyright Alexandra Siu Lok Lo

Page generated in 0.0019 seconds