Tooth enamel is the hardest and most resistant highly mineralized inorganic component in mammalian bodies that significantly affects both the life quality and expectancy of an indi- vidual. Its specific qualitative properties are given by the biomineralization process responsible for its formation. In this process the mineralization of hydroxyapatite (HAp), the only inor- ganic phase composing the mammalian hard tissues, is controlled by activity of enamel-forming cells ameloblasts and their products. Over the past years, the studies of enamel matrix pro- teins, their structure, composition and function has become the prevalent field of experimental investigation. However, unique enamel qualities, which enable the teeth to withstand high pressure and stress demands, cannot be accurately assessed without the thorough systematical study of its mineral compound. In this thesis, I focus on the crystallographic and compositional characteristics of enamel hydroxyapatite and their influence on the mechanical properties of teeth. Obtained results are discussed in context of developmental and adaptation dynamics of mammalian species. The main aspect of the work is to extend our knowledge about the protein-mediated mineraliza- tion process from the perspective of inorganic compound and its contribution to the...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:372829 |
Date | January 2018 |
Creators | Kallistová, Anna |
Contributors | Skála, Roman, Frýda, Jiří, Oldak, Janet |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0023 seconds