Return to search

PCL-Calcium Phosphate 3D Printed Scaffolds For Bone Tissue Regeneration

The design and selection of a biomaterial will depend on its specific application and the required properties for that application, both mechanical physicochemical properties. Biomaterials can be extremely helpful in order to treat and help the human body to heal and repair faster any kind of fracture produced in bones. Calcium phosphate scaffolds produced by sol-gel procedures have been used for this purpose with a great success regarding mechanical properties and biocompatibility. This is the reason why new techniques needs to be developed to be able to produce scaffolds in a faster way and to reach a personalized treatment to each patient. By using 3D printing techniques, a new and promising scope is open for bone tissue engineering due to the possibility of printing scaffolds with any shape and complexity through CAD design and modelling. In this project 3D printed scaffolds with a matrix combination of polymers and calcium phosphate will be produced and studied for bone tissue regeneration. Self-setting alpha tricalcium phosphate (α-TCP) based cement inks combined with polycaprolactone (PCL) were optimized, and 3D printed structure scaffolds were successfully generated by direct ink writing. Afterwards, the scaffolds were subjected to different hardening processes in order to obtain different hydroxyapatite microstructure morphologies and were characterised by different methodologies. It was demonstrated the important effect of obtaining a complete transformation from the α-TCP into hydroxyapatite in the mechanical properties. An improvement in the mechanical properties at compression was achieved with the addition of PCL within the scaffold ́s structure and a different fracture mode of the scaffolds was observed.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-81735
Date January 2020
CreatorsGarcia Perez Delabat, Javier
PublisherLuleå tekniska universitet, Institutionen för teknikvetenskap och matematik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds