La croissance exponentielle de la génération de données pour la bioinformatique couplée à une stagnation des fréquences d'horloge des processeurs modernes accentuent la nécessité de fournir des implémentation tirant bénéfice des capacités parallèles des ordinateurs modernes. Cette thèse se concentre sur des algorithmes et implementations pour des problèmes de bioinformatique. Plusieurs types de parallélisme sont décrits et exploités. Cette thèse présente des applications en génétique, avec un outil de détection de QTL paralllisé sur GPU, en comparaison de structures de protéines, avec un outil permettant de trouver des régions similaires entre protéines parallélisé sur CPU, ainsi qu'à l'analyse de larges graphes avec une implémentation multi-GPUs d'un nouvel algorithme pour le problème du "All-Pairs Shortest Path".
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00912553 |
Date | 18 December 2013 |
Creators | Chapuis, Guillaume |
Publisher | École normale supérieure de Cachan - ENS Cachan |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds