La course à l'augmentation de la puissance de calcul qui se déroule depuis de nombreuses années entre les différents producteurs de matériel a depuis quelques années changé de visage: nous assistons en effet désormais à une véritable démocratisation des machines parallèles avec une complexification sans cesse croissante de la structure des processeurs. À terme, il est tout à fait envisageable de voir apparaître pour le grand public des architecture pleinement hétérogènes composées d'un ensemble de cœurs reliés par un réseau sur puce. La parallélisation et l'exécution parallèle d'applications sur les machines à venir soulèvent ainsi de nombreux problèmes. Parmi ceux-ci, nous nous intéressons ici au problème de l'ordonnancement d'un ensemble de tâches sur un ensemble de cœurs, c'est à dire le choix de l'affectation du travail à réaliser sur les ressources disponibles. Parmi les méthodes existantes, on distingue deux types d'algorithmes: en-ligne et hors-ligne. Les algorithmes en-ligne comme le vol de travail présentent l'avantage de fonctionner en l'absence d'informations sur le matériel ou la durée des tâches mais ne permettent généralement pas une gestion efficace des communications. Dans cette thèse, nous nous intéressons à l'ordonnancement de tâches en-ligne sur des plates-formes complexes pour lesquelles le réseau peut, par des problèmes de congestion, limiter les performances. Plus précisément, nous proposons de nouveaux algorithmes d'ordonnancement en-ligne, basés sur le vol de travail, ciblant deux configurations différentes. D'une part, nous considérons des applications pour lesquelles le graphe de dépendance est connu à priori. L'utilisation de cette information nous permet ainsi de limiter les quantités de données transférées et d'obtenir des performances supérieures aux meilleurs algorithmes hors-ligne connus. D'autre part, nous étudions les optimisations possibles lorsque l'algorithme d'ordonnancement connaît la topologie de la plate-forme. Encore une fois, nous montrons qu'il est possible de tirer parti de cette information pour réaliser un gain non-négligeable en performance. Nos travaux permettent ainsi d'étendre le champ d'application des algorithmes d'ordonnancement vers des architectures plus complexes et permettront peut-être une meilleure utilisation des machines de demain.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00661447 |
Date | 08 December 2011 |
Creators | Quintin, Jean-noël |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0016 seconds