Return to search

An APOS exploration of conceptual understanding of the chain rule in calculus by first year engineering students.

The main issue in this study is how students conceptualise mathematical learning in the context of calculus with specific reference to the chain rule. The study focuses on how students use the chain rule in finding derivatives of composite functions (including trigonometric ones). The study was based on the APOS (Action-Process-Objects-Schema) approach in exploring conceptual understanding displayed by first year University of Technology students in learning the chain rule in calculus.
The study consisted of two phases, both using a qualitative approach. Phase 1 was the pilot study which involved collection of data via questionnaires which were administered to 23 previous semester students of known ability, willing to participate in the study. The questionnaire was then administered to 30 volunteering first year students in Phase 2. A structured way to describe an individual student's understanding of the chain rule was developed and applied to analyzing the evolution of that understanding for each of the 30 first year students. Various methods of data collection were used namely: (1) classroom observations, (2) open-ended questionnaire, (3) semi-structured and unstructured interviews, (4) video-recordings, and (5) written class work, tests and exercises.
The research done indicates that it is essential for instructional design to accommodate multiple ways of function representation to enable students to make connections and have a deeper understanding of the concept of the chain rule. Learning activities should include tasks that demand all three techniques, Straight form technique, Link form technique and Leibniz form technique, to cater for the variation in learner preferences. It is believed that the APOS paradigm using selected activities brought the students to the point of being better able to understand the chain rule and informed the teaching strategies for this concept.
In this way, it is believed that this conceptualization will enable the formulation of schema of the chain rule which can be applied to a wider range of contexts in calculus. There is a need to establish a conceptual basis that allows construction of a schema of the chain rule. The understanding of the concept with skills can then be augmented by instructional design based on the modified genetic decomposition. This will then subject students to a better understanding of the chain rule and hence more of calculus and its applications. / Thesis (Ph.D.)-University of KwaZulu-Natal, Edgewood, 2011.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:ukzn/oai:http://researchspace.ukzn.ac.za:10413/6369
Date January 2011
CreatorsJojo, Zingiswa Mybert Monica.
ContributorsBrijlall, Deonarain., Maharaj, A.
Source SetsSouth African National ETD Portal
Languageen_ZA
Detected LanguageEnglish
TypeThesis

Page generated in 0.0019 seconds