On étudie les fonctions multivaluées vers un espace de Hilbert. Après avoir introduit unebonne notion de p énergie, on donne une définition possible d’espace de Sobolev et on prouveun théorème d’existence des p minimiseurs. Puis on considère les fonctions bivaluées de deuxvariables, stationnaires pour les déformations au départ et à l’arrivée. On démontre qu’ellessont localement lipschitziennes et on utilise cette régularité pour montrer la convergence fortedans W1,2 vers leur unique éclatement en un point. L’ensemble de branchement d’une tellefonction est la réunion localement finie de courbes analytiques qui se rencontrent en faisantdes angles égaux. Nous donnons aussi un exemple de fonction discontinue et stationnaireseulement pour les déformations au départ.Dans un deuxième temps, on prouve qu’il n’existe pas de rétraction uniformément continuede l’espace des champs vectoriels continus vers le sous-espace de ceux dont la divergence estnulle en un sens distributionnel. On généralise ce résultat en toute codimension en utilisant lanotion de m charge et à tout ensemble X ⊂ Rn vérifiant une hypothèse géométrique mineure. / We study multiple valued functions with values in a Hilbert space. We introduce a possibledefinition of Sobolev spaces and the rightful notion of p energy. We prove the existence of pminimizers. Then we consider two-valued real functions of two variables which are stationarywith respect to both domain and range transformations. We prove their local Lipschitzcontinuity and use it to establish strong convergence in W1,2 to their unique blow-up at anypoint. We claim that the branch set of any such function consists of finitely many real analyticcurves meeting at nod points with equal angles. We also provide an example showing thatstationarity with respect to domain transformations only does not imply continuity.In a second part, we prove that there does not exist a uniformly continuous retractionfrom the space of continuous vector fields onto the subspace of vector fields whose divergencevanishes in the distributional sense. We then generalise this result using the concept of mcharges on any subset X _ Rn satisfying a mild geometric condition, there is no uniformlycontinuous representation operator for mcharges in X.
Identifer | oai:union.ndltd.org:theses.fr/2014PA112004 |
Date | 07 January 2014 |
Creators | Bouafia, Philippe |
Contributors | Paris 11, David, Guy |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0018 seconds