Return to search

IVORA (Image and Computer Vision for Augmented Reality) : Color invariance and correspondences for the definition of a camera/video-projector system / IVORA (Image et Vision par Ordinateur pour la Réalité Augmentée) : Invariance colorimétrique et correspondances pour la définition d'un système projecteur/caméra

La Réalité Augmentée Spatiale (SAR) vise à superposer spatialement l'information virtuelle sur des objets physiques. Au cours des dernières décennies ce domaine a connu une grande expansion et est utilisé dans divers domaines, tels que la médecine, le prototypage, le divertissement etc. Cependant, pour obtenir des projections de bonne qualité, on doit résoudre plusieurs problèmes, dont les plus importants sont la gamme de couleurs réduite du projecteur, la lumière ambiante, la couleur du fond, et la configuration arbitraire de la surface de projection dans la scène. Ces facteurs entraînent des distorsions dans les images qui requièrent des processus de compensation complémentaires.Les projections intelligentes (smart projections) sont au cœur des applications de SAR. Composées d'un dispositif de projection et d'un dispositif d'acquisition, elles contrôlent l'aspect de la projection et effectuent des corrections à la volée pour compenser les distorsions. Bien que les méthodes actives de Lumière Structurée aient été utilisées classiquement pour résoudre ces problèmes de compensation géométrique, cette thèse propose une nouvelle approche non intrusive pour la compensation géométrique de plusieurs surfaces planes et pour la reconnaissance des objets en SAR s'appuyant uniquement sur la capture du contenu projeté.Premièrement, cette thèse étude l'usage de l'invariance couleur pour améliorer la qualité de la mise en correspondance entre primitives dans une configuration d'acquisition des images vidéoprojetées. Nous comparons la performance de la plupart des méthodes de l'état de l'art avec celle du descripteur proposé basé sur l'égalisation d'histogramme. Deuxièmement, pour mieux traiter les conditions standard des systèmes projecteur-caméra, deux ensembles de données de captures de projections réelles, ont été spécialement préparés à des fins expérimentales. La performance de tous les algorithmes considérés est analysée de façon approfondie et des propositions de recommandations sont faites sur le choix des algorithmes les mieux adaptés en fonction des conditions expérimentales (paramètres image, disposition spatiale, couleur du fond...). Troisièmement, nous considérons le problème d'ajustement multi-surface pour compenser des distorsions d'homographie dans les images acquises. Une combinaison de mise en correspondance entre les primitives et de Flux Optique est proposée afin d'obtenir une compensation géométrique plus rapide. Quatrièmement, une nouvelle application en reconnaissance d'objet à partir de captures d'images vidéo-projetées est mise en œuvre. Finalement, une implémentation GPU temps réel des algorithmes considérés ouvre des pistes pour la compensation géométrique non intrusive en SAR basée sur la mise en correspondances entre primitives. / Spatial Augmented Reality (SAR) aims at spatially superposing virtual information on real-world objects. Over the last decades, it has gained a lot of success and been used in manifold applications in various domains, such as medicine, prototyping, entertainment etc. However, to obtain projections of a good quality one has to deal with multiple problems, among them the most important are the limited projector output gamut, ambient illumination, color background, and arbitrary geometric surface configurations of the projection scene. These factors result in image distortions which require additional compensation steps.Smart-projections are at the core of PAR applications. Equipped with a projection and acquisitions devices, they control the projection appearance and introduce corrections on the fly to compensate distortions. Although active structured-light techniques have been so far the de-facto method to address such problems, this PhD thesis addresses a relatively new unintrusive content-based approach for geometric compensation of multiple planar surfaces and for object recognition in SAR.Firstly, this thesis investigates the use of color-invariance for feature matching quality enhancement in projection-acquisition scenarios. The performance of most state-of-the art methods are studied along with the proposed local histogram equalization-based descriptor. Secondly, to better address the typical conditions encountered when using a projector-camera system, two datasets of real-world projections were specially prepared for experimental purposes. Through a series of evaluation frameworks, the performance of all considered algorithms is thoroughly analyzed, providing several inferences on that which algorithms are more appropriate in each condition. Thirdly, this PhD work addresses the problem of multiple-surface fitting used to compensate different homography distortions in acquired images. A combination of feature matching and Optical Flow tracking is proposed in order to achieve a more low-weight geometric compensation. Fourthly, an example of new application to object recognition from acquired projections is showed. Finally, a real-time implementation of considered methods on GPU shows prospects for the unintrusive feature matching-based geometric compensation in SAR applications.

Identiferoai:union.ndltd.org:theses.fr/2015SACLS168
Date27 November 2015
CreatorsSetkov, Aleksandr
ContributorsUniversité Paris-Saclay (ComUE), Jacquemin, Christian
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.0024 seconds