Return to search

O tensor de Ricci e campos de killing de espaços simétricos / The Ricci tensor and symmetric space killing fields

VASCONCELOS, Rosa Tayane de. O tensor de Ricci e campos de killing de espaços simétricos. 2017. 81 f. Dissertação (Mestrado em Matemática)- Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-09-18T13:45:50Z
No. of bitstreams: 1
2017_dis_rtvasconcelos.pdf: 555452 bytes, checksum: 4ff6c8fb7950682913acabed03e9d3d7 (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde,

A Dissertação de ROSA TAYANE DE VASCONCELOS apresenta a alguns erros que devem corrigidos, os mesmos seguem listados abaixo:

1- EPÍGRAFE (coloque o nome do autor da epígrafe todo em letra maiúscula)
2- RESUMO/ ABSTRACT (retire o recuo dos parágrafos do resumo e do abstract)
3- PALAVRAS-CHAVE/ KEYWORDS (coloque a letra inicial do primeiro elemento das palavras-
-chave e das Keywords em maiúscula)
4- CITAÇÕES (as citações a autores, que aparecem em todo o trabalho, não estão no padrão ABNT: se for apenas uma referência geral a uma obra, deve se colocar o último sobrenome do autor em letra maiúscula e o ano da publicação, ex.: EBERLEIN (2005). Caso seja a citação de um trecho particular da obra deve acrescentar o número da página, ex.: EBERLEIN (2005, p. 30).
OBS.: as citações não devem estar entre colchetes.
5- TÍTULOS DOS CAPÍTULOS E SEÇÕES (coloque os títulos dos capítulos e seções em negrito)
6- REFERÊNCIAS (as referências bibliográficas não estão no padrão ABNT: apenas o último sobrenome do autor, que inicia a referência, deve estar em letra maiúscula, o restante do nome deve estar em letra minúscula.
EX.: BROCKER, Theodor; TOM DIECK, Tammo. Representations of compact Lie groups, v. 98. Springer Science & Business Media, 2013.

Atenciosamente,
on 2017-09-18T15:04:06Z (GMT) / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-09-19T13:33:40Z
No. of bitstreams: 1
2017_dis_rtvasconcelos.pdf: 522079 bytes, checksum: ff99004fbe22e922f704a6a87365d3b6 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-09-21T12:18:22Z (GMT) No. of bitstreams: 1
2017_dis_rtvasconcelos.pdf: 522079 bytes, checksum: ff99004fbe22e922f704a6a87365d3b6 (MD5) / Made available in DSpace on 2017-09-21T12:18:22Z (GMT). No. of bitstreams: 1
2017_dis_rtvasconcelos.pdf: 522079 bytes, checksum: ff99004fbe22e922f704a6a87365d3b6 (MD5)
Previous issue date: 2017-09-13 / This work brings a smooth and self-contained introduction to the study of the most basic aspects of symmetric spaces, having as its nal goal the characterization of the Killing vector fields and of the Ricci tensor of such riemannian manifolds. Several of the results presented in the initial chapter are not easily found, in the Diferential Geometry literature, in a way as accessible and self-contained as here. This being said, we believe that this work embodies some didactic relevance, for it others students interested in symmetric spaces a relatively smooth first contact. We shall generally look at symmetric spaces as homogeneous manifolds G=H,
where G is a Lie group and H is a closed Lie subgroup of G, such that the natural mapping : G ! G=H is a riemannian submersion. Ultimately, this map allows us to describe the relationships between the curvature, the Ricci tensor and the geodesics of G and G=H. For our purposes, the crucial remark is that, under appropriate circumstances, one guarantees the existence, in G=H, of a metric for which left translations are
isometries. Hence, a one-parameter family of such isometries gives rise to a Killing vector field, which turn into a Jacobi vector eld when restricted to a geodesic. We present explicit expressions for such Jacobi vector elds, showing that they only depend on the eigenvalues of the linear operator TX : g ! g given by TX = (adX)2, for certain vector elds X 2 g. / Este trabalho traz uma introdução suave e autocontida ao estudo dos aspectos mais básicos de espaços simétricos, tendo como objetivo final a caracterização dos campos de Killing e do tensor de Ricci de tais variedades riemannianas. Vários dos resultados obtidos nos capítulos iniciais não são encontrados, na
literatura de Geometria Diferencial, de maneira tão acessível e autocontida como apresentados aqui. Com isso, acreditamos que o trabalho reveste-se de alguma relevância didática, por oferecer aos alunos interessados no estudo de espaços simétricos um primeiro contato relativamente suave. Em linhas gerais, veremos espaços simétricos como variedades homogêneas G=H, onde G e um grupo de Lie e H um subgrupo de Lie fechado de G, tais que a aplicação natural: G ! G=H seja uma submersão riemanniana. Através dela, descrevemos relações entre a curvatura, o tensor de Ricci e as geodésicas de G e G=H. Para nossos propósitos, a observação crucial e que, sob certas hipóteses, garantimos a existência, em
G=H, de uma métrica cujas translações a esquerda são isometrias. Portanto, uma família a um parâmetro de tais isometrias d a origem a um campo de Killing que, por sua vez, restrito a geodésicas torna-se um campo de Jacobi. Apresentamos expressões para esses campos de Jacobi, mostrando que os mesmos só dependem dos autovalores do operador linear TX : g ! g dado por TX = (adX)2, para certos campos X 2 g.

Identiferoai:union.ndltd.org:IBICT/oai:www.repositorio.ufc.br:riufc/25968
Date13 September 2017
CreatorsVasconcelos, Rosa Tayane de
ContributorsMuniz Neto, Antonio Caminha
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFC, instname:Universidade Federal do Ceará, instacron:UFC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.003 seconds