In a previous study, twenty-five flaA types were detected among 200 Campylobacter jejuni isolates obtained from clinical and poultry meat sources.
The most common flaA type detected among poultry isolates was flaA-3 at a frequency of 23%. In contrast, flaA-3 constituted 5% of the clinical isolates. FlaA-15 was detected most frequently among clinical isolates (31%) but rarely among poultry isolates (5%). Purchasers of poultry meat were therefore commonly exposed to flaA-3 yet most of the human infections were due to flaA type 15. The prevalence of different flaA types in poultry and humans might have been due to: FlaA-15 was more virulent for humans than flaA-3 (infection more likely to result). There were more C. jejuni flaA-15 cells on poultry meat (dose effect). Better survival of flaA-15 cells when freeze/thawed or when stored at +4�C (survival in kitchen). Ecological performance of flaA-3 strains in chicken gut better than that of flaA-15 (more flaA -3 cells in gut therefore greater chance of carcass contamination)?
Eleven strains representing flaA types 3, 13, and 15 were tested for their ability to invade cultured human epithelial cells (HEp-2). Invasiveness was considered to reflect virulence. FlaA-15 isolates were more invasive in comparison to flaA-3 and flaA-13 isolates (p<0.0001).
Washings from chicken portions were cultured to enumerate Campylobacter cells present on the meat. C. jejuni isolates were flaA typed and the numbers were related to FlaA type. A correlation was not detected.
The eleven representative strains were used to inoculate 1 cm� sections of chicken skin which were stored at -20�C or +4�C over a five day period. The samples stored at -20�C were thawed and held either overnight at 25�C, overnight at +4�C or for thirty minutes at 25�C. The numbers of viable Campylobacter cells on the sections were determined. Survival ability differed from strain to strain but was not associated with flaA type.
The most invasive C. jejuni strain (T1016; flaA-15) and the least invasive strain (Pstau; flaA-3) were assessed for their ability to colonise the intestinal tract of one-day-old chicks. The dynamics of colonisation, after inoculation of the birds with pure cultures or with mixtures, was monitored by real-time quantitative PCR. Strain-specific primers based on the variable region of the nucleotide base sequence of flaA genes were derived for this work. This enabled the individual strains to be enumerated in gut contents from colonized chickens. Both strains could colonise the chick intestinal tract but C. jejuni strain T1016 (flaA-15) could competitively exclude PStau (flaA-3).
It was concluded that the higher prevalence of flaA-15 strains among the clinical isolates was due to its higher virulence for humans. In other words, despite a low prevalence of flaA-15 on poultry meat, infection was more likely to result when C. jejuni flaA-15 cells were consumed.
Identifer | oai:union.ndltd.org:ADTP/217592 |
Date | January 2005 |
Creators | Pope, Christopher E., n/a |
Publisher | University of Otago. Department of Microbiology and Immunology |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://policy01.otago.ac.nz/policies/FMPro?-db=policies.fm&-format=viewpolicy.html&-lay=viewpolicy&-sortfield=Title&Type=Academic&-recid=33025&-find), Copyright Christopher E. Pope |
Page generated in 0.002 seconds