The problem of reference trajectory reconfiguration and long-term uncontrolled recovery of a formation of spacecraft is considered in an eccentric orbit under the influence of the J2 perturbation. Reference trajectories considered are the Projected Circular Orbit, Along-Track Orbit, and their eccentric modifications. Reconfiguration is accomplished using two, finite-pulse thrusts, modeled as impulses. The state transition matrix (STM) is calculated by four methods: (i) analytically from the Hill-Clohessy-Wiltshire equations, (ii) numerical integration using a fourth-order Runge-Kutta method, (iii) from the fundamental matrix of the linearized equations of motion, and (iv) computing the STM for the relative mean orbital elements, the geometric method. Only the geometric method takes into account J2, and it is shown to perform the transfers most accurately of all the methods. The methods are also applied to the reconfiguration maneuvers of the University of Toronto's CanX 4/5 formation flying mission.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/17708 |
Date | 22 September 2009 |
Creators | Roscoe, Christopher William Thomas |
Contributors | Damaren, Christopher John |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0024 seconds