Ovarian cancer is one of the five most common causes of cancer death in women in the USA and UK. It is usually diagnosed when it is well established beyond the ovary in the peritoneum. Intravenous injection of cisplatin is a common palliative therapy for ovarian cancer patients. Intraperitoneal therapy has been shown to improve survival for patients. Poly(lactide-co-glycolide) (PLGA) is a biodegradable polyester which has been proven safe for medical implantation. PLGA microspheres or fibres have been considered in this work as depots for delivering intraperitoneal cisplatin directly to the tumour site. The aims of this work were (1) to develop microsphere depot formulations with improved drug release profiles compared to previous work; (2) Novel cisplatin containing solid and hollow fibres were to be developed and investigated as alternative structures for depot devices; (3) The drug release profiles were to be examined using mathematical models to allow rational comparison of the devices. It was found that cisplatin containing PLGA 65:35 solid and hollow fibres represent a novel, reproducible formulation for encapsulating higher amounts of cisplatin for an equivalent mass of excipient than other polymer formulations. The fibres developed in this study were able to maintain elevated concentrations of unbound cisplatin in the presence of a biological matrix for approximately 100 hours in vitro.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:500691 |
Date | January 2008 |
Creators | Campbell, Christopher |
Contributors | Perera, Semali |
Publisher | University of Bath |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Page generated in 0.0023 seconds