Return to search

Adapting multiple datasets for better mammography tumor detection / Anpassa flera dataset för bättre mammografi-tumördetektion

In Sweden, women of age between of 40 and 74 go through regular screening of their breasts every 18-24 months. The screening mainly involves obtaining a mammogram and having radiologists analyze them to detect any sign of breast cancer. However reading a mammography image requires experienced radiologist, and the lack of radiologist reduces the hospital's operating efficiency. What's more, mammography from different facilities increases the difficulty of diagnosis. Our work proposed a deep learning segmentation system which could adapt to mammography from various facilities and locate the position of the tumor. We train and test our method on two public mammography datasets and do several experiments to find the best parameter setting for our system. The test segmentation results suggest that our system could play as an auxiliary diagnosis tool for breast cancer diagnosis and improves diagnostic accuracy and efficiency. / I Sverige går kvinnor i åldrarna mellan 40 och 74 igenom regelbunden screening av sina bröst med 18-24 månaders mellanrum. Screeningen innbär huvudsakligen att ta mammogram och att låta radiologer analysera dem för att upptäcka tecken på bröstcancer. Emellertid krävs det en erfaren radiolog för att tyda en mammografibild, och bristen på radiologer reducerar sjukhusets operativa effektivitet. Dessutom, att mammografin kommer från olika anläggningar ökar svårigheten att diagnostisera. Vårt arbete föreslår ett djuplärande segmenteringssystem som kan anpassa sig till mammografi från olika anläggningar och lokalisera tumörens position. Vi tränar och testar vår metod på två offentliga mammografidataset och gör flera experiment för att hitta den bästa parameterinställningen för vårt system. Testsegmenteringsresultaten tyder på att vårt system kan fungera som ett hjälpdiagnosverktyg vid diagnos av bröstcancer och förbättra diagnostisk noggrannhet och effektivitet.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-231867
Date January 2018
CreatorsTao, Wang
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2018:383

Page generated in 0.0012 seconds