Cancer cells, unlike normal tissue, frequently rely on glycolysis for the production of energy and the metabolic intermediates required for their growth regardless of cellular oxygenation levels. This metabolic reconfiguration, termed the Warburg effect, provides a potential strategy to preferentially target tumours from a therapeutic perspective. The present study sought to investigate the glycolytic phenotype of breast and ovarian cancer, and assess the possibility of exploiting several glycolytic targets therapeutically. Initially the growth dependency of breast and ovarian cancer cells on the availability of glucose was established. An array of 10 compounds reported to inhibit key enzymes of the glycolytic pathway were investigated and compared against an extended panel of breast and ovarian cancer cell line models. All inhibitors investigated, targeted against multiple points of the pathway, were shown to block the glycolytic pathway as demonstrated by glucose accumulation in the culture media combined with decreased lactate secretion, and attenuated breast and ovarian cancer cell proliferation in a concentration dependent manner. Furthermore their mechanism of action was investigated by flow cytometric analysis and their antiproliferative effect was associated with induction of apoptosis and G0/G1 cell cycle arrest. The glycolytic inhibitors were further assessed in combination strategies with established chemotherapeutic and targeted agents and several synergistic interactions, characterised by low combination index values, were revealed. Among them, 3PO (a novel PFKFB3 inhibitor) enhanced the effect of cisplatin in both platinum sensitive and platinum resistant ovarian cancer cells suggesting a strategy for treatment of platinum resistant disease. Furthermore robust synergy was identified between IOM-1190 (a novel GLUT1 inhibitor) and metformin, an antidiabetic inhibitor of oxidative phosphorylation, resulting in strong inhibition of breast cancer cell growth. This combination is proposed for the treatment of highly aggressive triple negative breast tumours. An additional objective of this research was to investigate the effect of the oxygen level on sensitivity to glycolysis inhibition. Breast cancer cells were found to be more sensitive to glycolysis inhibition in high oxygen conditions. This enhanced resistance at low oxygen levels was associated with upregulation of the targeted glycolytic enzymes as demonstrated at both the mRNA (by gene expression microarray profiling, Illumina BeadArrays) and protein level (by Western blotting). Manipulation of LDHA (Lactate Dehydrogenase A) by siRNA knockdown provided further evidence that downregulation of this target was sufficient to significantly suppress breast cancer cell proliferation. Finally, the expression of selected glycolytic targets was examined in a clinical tissue microarray set of a large cohort of ovarian tumours using quantitative immunofluorescence technology, AQUA. The role of the glycolytic phenotype in ovarian cancer was suggested and interesting associations between the glycolytic profile and clear cell and endometrioid ovarian cancers revealed. Increased PKM2 (Pyruvate kinase isozyme M2) and LDHA expression were demonstrated in clear cell tumours and also low expression of these enzymes was significantly correlated with improved survival of endometrioid ovarian cancer patients. Taken together the findings of this study support the glycolytic pathway as a legitimate target for further investigation in breast and ovarian cancer treatment.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:739084 |
Date | January 2017 |
Creators | Xintaropoulou, Chrysi |
Contributors | Langdon, Simon ; Stewart, Grant ; Wise, Alan |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/29525 |
Page generated in 0.0018 seconds