Return to search

A search for optimal radiation therapy technique for lung tumours stereotactic body radiation therapy (SBRT) : dosimetric comparison of 3D conformal radiotherapy, static gantry intensity modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) with flattening filter (FF) or flattening filter-free (FFF) beams

Materials/Methods:
Ten patients who underwent thoracic SBRT with primary stage I (T1/2N0) lung cancer or oligometastatic lung lesion, with PTV diameter ≤ 5cm were selected and were immobilized with Easyfoam or Vac-Lock. Planned/treated with inspiratory breath-hold (25 seconds, 70 to 80% of vital capacity) assisted with Active Breathing Control (ABC). Four treatment plans: non-coplanar 3DCRT, coplanar static gantry IMRT, coplanar VMAT (FF) and VMAT (FFF) were generated. Field arrangements, either static fields or partial arcs (duration=20 sec) were used to avoid direct beam entry to contralateral lung. All plans were compared in terms of dosimetric performance included dose to PTV or organs at risk (OAR), high/low dose spillage, integral dose (body and lungs), dose delivery efficiency (MU/Gy) and estimated beam-on time (BOT) with reference to the RTOG 0813 protocol.
Results:
All plans complied with RTOG 0813 protocol. VMAT (FF/ FFF) techniques improved target coverage and dose conformity, with the highest conformity number (CN > 0.91), compared to IMRT (0.88) and 3DCRT (0.85). The control of high dose spillage (NT>105% and CI) for IMRT (3.04% and 1.08) and VMAT (FF/ FFF) (1.08/ 1.06% and 1.03/ 1.04) techniques were comparable (p > 0.05) and significantly better than 3DCRT (4.22% and 1.11, p < 0.005) technique. In addition, VMAT (FF/ FFF) techniques performed the best in controlling low dose spillage (D2cm and R50%) compared with IMRT (reduction: 4.7%, p=0.036 and >5.9%, p = 0.009) and 3DCRT (reduction: > 16.3%, p < 0.001 and > 10%, p = 0.002). Benefits of rapid and isotropic dose fall-off were shown from superior tissue sparing (reduction ranges from 3.2% up to 67%) of ipsilateral brachial plexus, skin (0-5mm), great vessels and ribs. Also lung V10, V12.5, esophagus and heart tend to receive lower dose with VMAT technique. The relatively lower integral dose to whole body (> 3Gy∙L reduction, p < 0.013) and ipsilateral lung (0.65Gy∙L reduction, p = 0.025) compared with 3DCRT, were associated with lower risk of radiation induced cancers. The MU/Gy and BOT were substantial lower for VMAT (FF) (22.4% and 32.4%) compared with IMRT. Apart from higher (7%) maximum skin dose, dosimetric performance for VMAT (FFF) was comparable with VMAT (FF), with advantages of further reduction of MU/Gy (1.8% lesser), partial arc numbers (from 12-14 arcs down to 8 arcs) and BOT (35% shortened), owing to the increased dose output with flattening filter removal.

Conclusions:
VMAT (FF and FFF) plans maintained IMRT equivalent plan qualities, simultaneously enhanced the delivery efficiency with shortened BOT. VMAT (FFF) further reduced the required arcs number and BOT, significantly minimized the intra-fraction motions and more tolerable to patient with long SBRT treatment duration. / published_or_final_version / Medicine / Master / Master of Medical Sciences

Identiferoai:union.ndltd.org:HKU/oai:hub.hku.hk:10722/196549
Date January 2013
CreatorsChiu, Siu-hau, 招兆厚
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Source SetsHong Kong University Theses
LanguageEnglish
Detected LanguageEnglish
TypePG_Thesis
RightsCreative Commons: Attribution 3.0 Hong Kong License, The author retains all proprietary rights, (such as patent rights) and the right to use in future works.
RelationHKU Theses Online (HKUTO)

Page generated in 0.0019 seconds