Glioblastoma multiforme (GBM) is an aggressive cancer that affects millions of patients per year. Conventional therapies combining chemotherapeutic agents with radiation can only extend survival by a few months; therefore, there is a dire need for an effective means of treating this deadly disease. Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), currently in the early stages of FDA pre-IND drug trials, has proven to be an effective cancer specific cytokine, able to trigger the onset of mitochondrial dysfunction and/or autophagy. GBM’s have mutations that often result in the activation of cytoprotective cell signaling pathways, preventing cancer therapeutics and even MDA-7/IL-24 treatments from being effective. Since the discovery of MDA-7/IL-24 a number of groups have shown toxic effects in a variety of tumor cells. However, the lethality of MDA-7/IL-24 is not enough to eradicate the tumor. We hypothesized two xxiii rationales for this minimalistic effect. First, the MDA-7/IL-24 gene delivery mechanisms are not efficient or second, active pro-survival pathways are playing a role in protection. Here we have shown that the inhibition of cytoprotective cell-signaling pathways using small molecule inhibitors of mitogen-activated extracellular regulated kinase (MEK)1/2 and phosphatidyl inositol 3-kinase (PI3K) or AKT; mammalian target of rapamycin (mTOR) and MEK1/2; HSP90 inhibitor 17AAG; and the autophagy-inducing drug OSU-03012 (AR-12), enhances the toxicity of MDA-7/IL-24. In addition, the use of a modified recombinant adenovirus comprised of the tail and shaft domains of a serotype 5 virus and the knob domain of a serotype 3 virus expressing MDA-7/IL-24, Ad.5/3-mda-7, proved to be a more effective, CAR-independent means of infecting and killing GBM cells in vitro and in vivo when compared to Ad.5-mda-7. Collectively, our data demonstrate that the induction of autophagy and mitochondrial dysfunction by a combinatorial treatment approach represents a potentially viable strategy to kill primary human GBM cells.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-3846 |
Date | 20 June 2012 |
Creators | Hamed, Hossein |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0017 seconds