Return to search

Photodynamic activity of a glucoconjugated Silicon(IV) phthalocyanine on human colon adenocarcinoma.

Chan, Man Hung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 111-126). / Abstract also in Chinese. / Examination Committee List --- p.ii / Declaration --- p.iii / Acknowledgements --- p.iv / 摘要(Abstract in Chinese) --- p.vi / Abstract --- p.viii / List of Abbreviations --- p.x / List of Figures and Tables --- p.xii / Table of Content --- p.xiv / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background of photodynamic therapy (PDT) --- p.2 / Chapter 1.1.1 --- History of PDT --- p.2 / Chapter 1.1.2 --- Photochemistry --- p.3 / Chapter 1.1.3 --- Principal stages of PDT --- p.5 / Chapter 1.1.4 --- Light sources of PDT --- p.6 / Chapter 1.2 --- Anti-tumor effect of PDT --- p.8 / Chapter 1.2.1 --- Mode of cell death --- p.8 / Chapter 1.2.2 --- PDT-induced anti-tumor immunity --- p.9 / Chapter 1.3 --- Clinical applications of PDT --- p.11 / Chapter 1.3.1 --- Photofrin® --- p.11 / Chapter 1.3.2 --- Clinical applications of PDT --- p.13 / Chapter 1.3.3 --- Challenges of PDT for clinical applications --- p.15 / Chapter 1.4 --- The development of new photosensitizers --- p.16 / Chapter 1.4.1 --- Targeted PDT --- p.16 / Chapter 1.4.2 --- Phthalocyanine --- p.18 / Chapter 1.5 --- Objective of my study --- p.21 / Chapter Chapter 2 --- Materials and Methods --- p.23 / Chapter 2.1 --- Synthesis of glucosylated silicon(IV) phthalocyanine (SiPcGlu) --- p.24 / Chapter 2.2 --- In vitro studies --- p.24 / Chapter 2.2.1 --- Cell line and culture conditions --- p.24 / Chapter 2.2.2 --- Photodynamic treatment --- p.25 / Chapter 2.2.3 --- Cell viability assay --- p.27 / Chapter 2.2.4 --- Light dose effect on the photocytotoxicity of SiPcGlu-PDT --- p.27 / Chapter 2.2.5 --- Determination of reactive oxygen species (ROS) production by SiPcGlu-PDT --- p.29 / Chapter 2.2.6 --- Effect of antioxidants on the photocytotoxicity of SiPcGlu-PDT --- p.29 / Chapter 2.2.7 --- Determination of ROS production after SiPcGlu-PDT --- p.30 / Chapter 2.2.8 --- Glucose competitive assay --- p.30 / Chapter 2.2.9 --- Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay --- p.30 / Chapter 2.2.10 --- DNA fragmentation analysis by gel electrophoresis --- p.31 / Chapter 2.2.11 --- Annexin-V & propidium iodide staining assay --- p.32 / Chapter 2.2.12 --- Subcellular localization studies --- p.33 / Chapter 2.2.13 --- Detection of mitochondrial superoxide production --- p.34 / Chapter 2.2.14 --- Assessment of mitochondrial membrane potential --- p.34 / Chapter 2.2.15 --- Caspase-3 activity assay --- p.35 / Chapter 2.2.16 --- "Western blot analyses for cytochrome c, caspase-3, PARP and glucose-regulated protein 78 (GRP78)" --- p.36 / Chapter 2.2.17 --- Ca2+ release from endoplasmic reticulum (ER) --- p.37 / Chapter 2.3 --- In vivo studies --- p.37 / Chapter 2.3.1 --- HT29 tumor-bearing nude mice model --- p.37 / Chapter 2.3.2 --- In vivo photodynamic treatment --- p.39 / Chapter 2.3.3 --- Biodistribution of SiPcGlu --- p.39 / Chapter 2.3.4 --- Assay for plasma enzyme activities --- p.40 / Chapter 2.4 --- Statistical analysis --- p.41 / Chapter Chapter 3 --- Results --- p.42 / Chapter 3.1 --- In vitro studies --- p.43 / Chapter 3.1.1 --- SiPcGlu-PDT induced cytotoxicity on HT29 cells --- p.43 / Chapter 3.1.2 --- Light dose effect on cytotoxicity by SiPcGlu-PDT --- p.46 / Chapter 3.1.3 --- SiPcGlu-PDT induced ROS production --- p.48 / Chapter 3.1.4 --- SiPcGlu-PDT induced cell death through Type I and II photoreactions --- p.48 / Chapter 3.1.5 --- ROS production after SiPcGlu-PDT --- p.51 / Chapter 3.1.6 --- Glucose competitive Assay --- p.55 / Chapter 3.1.7 --- SiPcGlu-PDT induced apoptosis in HT29 cells --- p.57 / Chapter 3.1.8 --- Subcellular localization of SiPcGlu --- p.61 / Chapter 3.1.9 --- SiPcGlu-PDT induced mitochondrial changes --- p.66 / Chapter 3.1.10 --- SiPcGlu-PDT induced caspase activation --- p.68 / Chapter 3.1.11 --- SiPcGlu-PDT increased expression of ER chaperone GRP78 --- p.72 / Chapter 3.1.12 --- SiPcGlu-PDT induced release of Ca2+ from ER --- p.72 / Chapter 3.2 --- In vivo studies --- p.75 / Chapter 3.2.1 --- In vivo photodynamic activities --- p.75 / Chapter 3.2.2 --- Tissue distribution of SiPcGlu --- p.77 / Chapter 3.2.3 --- Analysis of intrinsic toxicity --- p.77 / Chapter Chapter 4 --- Discussion --- p.80 / Chapter 4.1 --- Physical Properties of SiPcGlu --- p.81 / Chapter 4.2 --- In vitro studies --- p.82 / Chapter 4.2.1 --- SiPcGlu-PDT exhibits a high potency in killing HT29 cells --- p.82 / Chapter 4.2.2 --- ROS production is responsible for the cytotoxic effect of SiPcGlu-PDT --- p.83 / Chapter 4.2.3 --- SiPcGlu-PDT induced apoptosis in HT29 cells --- p.85 / Chapter 4.2.4 --- SiPcGlu is localized in various membranous organelles --- p.87 / Chapter 4.2.5 --- SiPcGlu-PDT induced mitochondria-mediated apoptosis --- p.89 / Chapter 4.2.6 --- SiPcGlu-PDT induced ER stress --- p.93 / Chapter 4.3 --- In vivo studies --- p.96 / Chapter 4.3.1 --- SiPcGlu failed to target to tumor tissues --- p.96 / Chapter 4.3.2 --- SiPcGlu-PDT induced retardation in tumor growth --- p.99 / Chapter 4.3.3 --- SiPcGlu is a safe photosensitizer for PDT --- p.101 / Chapter Chapter 5 --- Conclusion and Future Perspectives --- p.103 / Chapter 5.1 --- Conclusion --- p.104 / Chapter 5.2 --- Future Perspectives --- p.106 / Chapter 5.2.1 --- In vitro studies --- p.106 / Chapter 5.2.1.1 --- Lysosomal pathway to cell death --- p.106 / Chapter 5.2.2 --- In vivo studies --- p.107 / Chapter 5.2.2.1 --- Pharmacokinetic studies --- p.107 / Chapter 5.2.2.2 --- Eradication of HT29 tumor by repeated dose of SiPcGlu --- p.108 / Chapter 5.2.2.3 --- SiPcGlu-PDT-induced anti-tumor immunity --- p.108 / Chapter 5.2.2.4 --- Enhancement of tumor selectivity by conjugating with biomolecules --- p.109 / References --- p.110

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_326806
Date January 2009
ContributorsChan, Man Hung., Chinese University of Hong Kong Graduate School. Division of Life Sciences.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xviii, 126 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0024 seconds