Return to search

Transition from integrable to chaotic domain in spectra of spin chains

Submitted by Alice Araujo (alice.caraujo@ufpe.br) on 2018-06-04T21:25:20Z
No. of bitstreams: 1
DISSERTAÇÃO Juan Nicolás Moreno Tarquino.pdf: 3366802 bytes, checksum: 8f77304451b054ca28fcc60e8ca976e4 (MD5) / Made available in DSpace on 2018-06-04T21:25:20Z (GMT). No. of bitstreams: 1
DISSERTAÇÃO Juan Nicolás Moreno Tarquino.pdf: 3366802 bytes, checksum: 8f77304451b054ca28fcc60e8ca976e4 (MD5)
Previous issue date: 2016-08-31 / CNPQ / In this thesis we present an approach, similar to random matrix ensembles, in order to study the integrable-chaotic transition in the Heisenberg spin model. We consider three ways to break the integrability: presence on an external field on a single spin, coupling of an external random field with each spin in the chain and next nearest neighbor interaction between spins. We propose a transition described by a power law in the spectral density, i.e. S(k) ∝ 1/kα, where α = 2 for the integrable case and α = 1 for the chaotic case, with 1 < α < 2 for systems in the crossover regime. The transition is also described by the behavior of the "burstiness" B and the Kullback–Leibler divergence DLK(PW−D(s)|Pdata(s)), where PW−D(s) and Pdata(s) are the Wigner-Dyson and the system’s spacing distribution respectively. The B coefficient is associated to a sequence of events in the system. The Kullback–Leibler divergence provides information on how two distributions differ from each other. From analyzing the behavior of these three quantities, we obtain a universal description of integrable-chaotic transition in the spin chains. / Nesta dissertação apresentaremos uma descrição, similar a dos ensembles da teoria de matrizes aleatórias, com o objetivo de estudar transições entre os regimes integrável e caótico em uma cadeia de spins de Heisenberg. Consideramos três formas de quebrar a integrabilidade: interação de um campo externo com um único spin, interação com um campo aleatório em cada spin da cadeia e interação entre segundos vizinhos. Nós propomos uma transição integrável-caótica pode ser descrita por uma lei de potências na densidade espectral S(k), ou seja os sistemas quânticos caóticos apresentam ruído S(k) ∝ 1/kα, onde α = 2 para o caso integrável e α = 1 para o caso caótico, com 1 < α < 2 para sistemas que estão entre os dois regimes. A transição também é descrita pelo comportamento do “burstiness“ B e da divergência de Kullback–Leibler DLK(PW−D(s)|Pdados(s)), onde PW−D(s) é a distribuição de Wigner-Dyson e Pdados(s) é a distribuição de espaçamentos obtida do sistema. O primeiro é associado a séries de eventos de caráter regular e o segundo mede o grau com que diferem as duas distribuições estatísticas. Analisando o comportamenteo desses indicadores, obtivemos uma rota universal para a transição integrável-caótico na cadeia de spins.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/24737
Date31 August 2016
CreatorsMORENO TARQUINO, Juan Nicolas
Contributorshttp://lattes.cnpq.br/7160030619369816, MACEDO, Antonio Murilo Santos
PublisherUniversidade Federal de Pernambuco, Programa de Pos Graduacao em Fisica, UFPE, Brasil
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE
RightsAttribution-NonCommercial-NoDerivs 3.0 Brazil, http://creativecommons.org/licenses/by-nc-nd/3.0/br/, info:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds