L'objectif de ce travail est de comprendre l'influence des particules très fines sur le phénomène de ré-agglomération lors du broyage. Des billes de verre de taille 0 à 20 µm avec un pourcentage massique variant entre 0 à 1% sont ajoutées dans un tas granulaire de billes de verre de 200 à 300 µm dans un tambour tournant cylindrique de diamètre et longueur 10 cm. La présence des particules fines montre un effet ambivalent sur la stabilité du tas granulaire. Nous avons établi un diagramme de stabilité du milieu granulaire en fonction de la concentration de particules fines et cherché à quantifier l'effet des fines combiné avec d'autres paramètres (humidité relative et vitesse de rotation du tambour). La stabilité d'un tas granulaire dans un tambour tournant est déterminée par la mesure de son angle maximum de stabilité θm. Dans un premier temps, nous avons étudié l'évolution de cet angle à des vitesses de rotation différentes. Les expériences montrent qu'à faible concentration (< 0; 15%), le tas se déstabilise par avalanches lorsque le tambour tourne, θm diminue lorsqu'on augmente la quantité de fines. Quand la vitesse de rotation augmente, le mouvement du tas évolue du régime d'avalanche intermittent au régime d'écoulement continu. En revanche, lorsque la concentration des fines est supérieure à 0,15%, la déstabilisation du tas se traduit par un phénomène de stick-slip à la paroi du tambour, et la quantité de fines augmente la stabilité du tas. Ce comportement apparemment contradictoire est lié au fait que la localisation de la déstabilisation est modifiée. Dans le régime des faibles concentrations, les avalanches commencent à la surface du tas, et le remplissage de l'espace intermédiaire entre les grosses billes par les fines rend la surface de plus en plus lisse, ce qui déstabilise le tas. Par ailleurs, les fines induisent une augmentation de la cohésion du tas par la nucléation des ponts capillaires entre les grains. Ainsi, dans le régime des fortes concentrations, le tas granulaire se comporte comme un corps solide et la déstabilisation a lieu à l'interface tas-tambour. Nous avons également étudié l'influence de l'humidité relative sur la stabilité et montré que dans le régime de faible concentration de particules fines, la déstabilisation est indépendante de l'humidité. D'autre part dans le régime des hautes teneurs en fines, une humidité relative élevée induit une forte cohésion due à la condensation capillaire entre les grains et le tambour ce qui entraîne une augmentation de l'angle maximum de stabilité. / The aim of this work is to understand the effect of very fine particles on the phenomenon of re-agglomeration in the grinding process. Various amount of fine glass beads of 0 to 20 µm (0 to 1% mass concentration) are added to a granular pile of glass beads of 200 to 300 µm rotated in a drum with inner diameter and length of 10 cm. The presence of fine particles shows an ambivalent effect on the stability of the granular heap. We established a stability diagram of the granular medium as a function of fine concentration and quantified the effect of fines combined with other parameters (relative humidity and rotation velocity). The stability of a granular heap in a rotating drum is determined by the measurement of the maximum angle of stability θm. Firstly, we studied the evolution of this angle with different rotation velocities. The experiments indicate that at low fine concentration (< 0:15%), the heap destabilizes through avalanches when the drum rotates, and increasing the fine quantity tends to decrease θm. When the rotation velocity increases, the granular medium transits from intermittent avalanche to continuous flow. In contrast, once the concentration is more than 0:15%, the destabilization of the heap proceeds through a stick-slip phenomenon at the drum wall, and the increase of the fraction of fines tends to increase the stability of the heap. This apparent contradictory behavior is linked to the modification of the destabilization location. In the small concentration regime, the avalanches start at the surface of the heap, and the filling of the interstitial space by the fine particles makes this surface smoother and smoother, thus destabilizing the heap. Besides, the fines induce, through the nucleation of capillary bridges between grains, an increase of the bulk cohesion of the heap. So in the large concentration regime, the heap behaves as a solid body and the destabilization occurs at its bottom. We also studied the influence of relative humidity on the granular stability in our experiment. We found out in the low fine concentration regime, the destabilization is independent of humidity. On the other hand, in the regime of high content of fines, high relative humidity induces a large cohesion due to the capillary condensation between the grains and the wall which induce the increase of the maximum stability angle.
Identifer | oai:union.ndltd.org:theses.fr/2013ECDL0034 |
Date | 25 October 2013 |
Creators | Huang, Xixi |
Contributors | Ecully, Ecole centrale de Lyon, Bec, Sandrine, Colombani, Jean |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds