Return to search

Estimação do tamanho populacional a partir de um modelo de captura-recaptura com heterogeneidade

Made available in DSpace on 2016-06-02T20:06:10Z (GMT). No. of bitstreams: 1
6083.pdf: 1151427 bytes, checksum: 24c39bb02ef8c214a3e10c3cc5bae9ef (MD5)
Previous issue date: 2014-03-14 / Financiadora de Estudos e Projetos / In this work, we consider the estimation of the number of errors in a software from a closed population. The process of estimating the population size is based on the capture-recapture method which consists of examining the software, in parallel, by a number of reviewers. The probabilistic model adopted accommodates situations in which reviewers are independent and homogeneous (equally efficient), and each error is an element that is part of a disjoint partition in relation to its detection probability. We propose an iterative process to obtain maximum likelihood estimates in which the EM algorithm is used to the nuisance parameters estimation. The estimates of population parameters were also obtained under the Bayesian approach, in which Monte Carlo on Markov Chains (MCMC) simulations through Gibbs sampling algorithm with insertion of latent variables were used on the conditional posterior distributions. The two approaches were applied to simulated data and in two real data sets from the literature. / Neste trabalho, consideramos a estimação do número de erros em um software provenientes de uma população fechada. O processo de estimação do tamanho populacional é baseado no método de captura-recaptura, que consiste em examinar o software, em paralelo, por certo número de revisores. O modelo probabilístico adotado acomoda situações em que os revisores são independentes e homogêneos (igualmente eficientes) e que cada erro é um elemento que faz parte de uma partição disjunta quanto à sua probabilidade de detecção. Propomos um processo iterativo para obtenção das estimativas de máxima verossimilhança em que utilizamos o algoritmo EM na estimação dos parâmetros perturbadores. As estimativas dos parâmetros populacionais também foram obtidas sob o enfoque Bayesiano, onde utilizamos simulações de Monte Carlo em Cadeias de Markov (MCMC) através do algoritmo Gibbs sampling com a inserção de variáveis latentes nas distribuições condicionais a posteriori. As duas abordagens foram aplicadas em dados simulados e em dois conjuntos de dados reais da literatura.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/4585
Date14 March 2014
CreatorsPezzott, George Lucas Moraes
ContributorsSalasar, Luis Ernesto Bueno
PublisherUniversidade Federal de São Carlos, Programa de Pós-graduação em Estatística, UFSCar, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds