La caractérisation d'un environnement tel que le milieu urbain est une tâche délicate car ce milieu est un phénomène complexe par différents aspects. Parmi ceux-ci, l'aspect géographique est considéré comme le plus important qui puisse être étudié par les technologies d'acquisition et les techniques d'analyse de la télédétection. En particulier, la télédétection hyperspectrale a montré son potentiel pour l'acquisition de données et l'extraction d'informations nécessaires pour la modélisation du milieu urbain. Dans cette thèse, pour l'analyse d'image hyperspectrale, deux stratégies supervisée et non supervisée ont été choisi. Nous avons appliqué les techniques de Mise en Correspondance Spectrale, en tant que les méthodes supervisées, en vue de la cartographie des matériaux urbains. Afin d'améliorer les résultats de ces techniques, nous avons proposé une technique de fusion au niveau de la décision. Par ailleurs, une technique non supervisée basée sur l'Analyse en Composantes Indépendantes pour la séparation spectrale et la classification, comme une solution de problème de mélange, est proposée. Elle emploie la technique de groupage C-Moyens Flou, afin d'obtenir une carte de classification floue et sub-pixelique. Ces techniques sont employées sur les données images hyperspectrales acquises par le capteur CASI sur la ville de Toulouse, en France. Elles sont enregistrées en 32 canaux spectraux avec la résolution spatiale de 2 mètres et 48 canaux en 4 mètres de résolution spatiale. Enfin, nous avons comparé les résultats de ces méthodes avec des données de vérité terrain et une évaluation du taux d'erreur de classification a été réalisée pour toutes les techniques.
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00002521 |
Date | 08 December 2005 |
Creators | Homayouni, Saeid |
Publisher | Télécom ParisTech |
Source Sets | CCSD theses-EN-ligne, France |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds