In this thesis we study embeddings of spaces of functions defined on Carnot- Carathéodory spaces. Main results of this work consist of conditions for Sobolev- type embeddings of higher order between rearrangement-invariant spaces. In a special case when the underlying measure space is the so-called X-PS domain in the Heisenberg group we obtain full characterization of a Sobolev embedding. The next set of main results concerns compactness of the above-mentioned em- beddings. In these cases we obtain sufficient conditions. We apply the general results to important particular examples of function spaces. In the final part of the thesis we present a new algorithm for approximation of the least concave majorant of a function defined on an interval complemented with the estimate of the error of such approximation. 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:392430 |
Date | January 2018 |
Creators | Franců, Martin |
Contributors | Pick, Luboš, Cianchi, Andrea, Nekvinda, Aleš |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds