Este trabalho apresenta o estudo da Retificação de Ultraprecisão de ligas de carbeto de tungstênio-cobalto (WC-Co) com diferentes microestruturas. A motivação para este estudo foi o grande potencial desta liga para a fabricação de componentes que requerem materiais de alta dureza e resistência à fratura. Devido à combinação dessas características, esses materiais vêm sendo usados na fabricação de moldes para injeção de lentes ópticas de dispositivos eletrônicos e ópticos. Assim, amostras de carbeto de tungstênio-cobalto foram submetidas a vários testes para determinação da correlação entre os parâmetros de corte e parâmetros estruturais (tamanho de grão e teor de cobalto) com o regime de remoção de material. As amostras foram polidas e posteriormente microendentadas com cargas variadas para pré-avaliar a ocorrência de formação de microtrincas. Testes de usinagem foram conduzidos em uma retificadora de ultraprecisão, usando rebolos de diamante e posteriormente a rugosidade e os danos da superfície (microtrincas e crateras) foram avaliados. Para melhor entendimento da influência dos parâmetros estruturais e dos parâmetros de corte sobre os resultados de rugosidade foi realizado um teste ANOVA. As forças de usinagem foram medidas durante os ensaios usando um microdinamômetro piezelétrico com objetivo de estimar a temperatura na zona de retificação. Os resultados obtidos indicam que tanto os parâmetros estruturais como os parâmetros de corte influenciam na rugosidade, microdureza e temperatura na zona de retificação das ligas de carbeto de tungstênio-cobalto. Amostras com maior tamanho de grãos apresentam as menores rugosidades e altas temperaturas na zona de retificação. A velocidade de avanço (Vf) mostrou-se mais influente que a profundidade de corte (ap). Menores velocidades de avanço aumentam a temperatura na zona de retificação e a microdureza na camada superficial. Entretanto, verificou-se que as maiores temperaturas obtidas nos ensaios não foram suficientes para promover alteração metalúrgica no material. Algumas condições de corte combinadas com parâmetros estruturais levam a remoção de material em regime dúctil, resultando em superfícies com qualidade óptica. A porcentagem de cobalto e a velocidade de avanço (Vf) têm forte influência na alteração da microdureza da camada superficial das amostras retificadas. A diminuição da velocidade de avanço tende a aumentar a microdureza na camada. Há aumento de microdureza de até 200 kgf/mm2, sugerindo a ocorrência de encruamento por tensões compressivas. Com base nestes resultados, acredita-se que a retificação de ultraprecisão apresenta-se como uma opção viável para a manufatura de componentes de carbeto de tungstênio com acabamento submicrométrico, possibilitando a eliminação dos processos tradicionais de manufatura óptica, tais como a lapidação e o polimento. / The ultraprecision grinding of different tungsten carbide-cobalt microstructures (WC-Co) were investigated. The motivation for this study is the materials high hardness and potential application for micromolds. These materials have been used as optical inserts in glass injection molding processes for optical and electric devices, due to their excellent combination of high hardness, ductility and fracture toughness. Tungsten carbide samples were subjected to tests to determine the correlation between cutting parameters and microstructures to achieve the ductile regime of material removal. Polished surfaces of carbide samples were indented using varying loads to evaluate the microcracks formation. The machining tests were conducted using an ultraprecision grinding and A V-shaped metal-bond was used. Surface roughness was investigated as functions of the grinding conditions by means Analysis of Variance (ANOVA). The tangential force was measured using a piezoelectric dynamometer to estimate the grinding zone temperature. The results indicate that structural parameters (grain size and cobalt content) and cutting parameters have a significant influence on surface roughness, micro-hardness and grinding zone temperature for tungsten carbide-cobalt alloys.Tungsten carbide-cobalt samples with the larger grain size presented lower surface finish results and high grinding temperatures. The feed rate (Vf) showed greater influence that the in-feed (ap). The grinding zone temperature and the hardness are increased when speed rate is reduced. However, it was found that the highest temperature achieved did not reach a critical temperature for phase transformation. Some cutting parameters combined with structural parameters lead to ductile mode grinding mechanism, and as consequence, high optical quality surfaces are obtained. The micro-hardness of layer is extremely influenced by cobalt content and speed rate. Lower feed rate tends to increase the micro-hardness up to 200 kgf/mm2, suggesting that the compressive stress occurs. Considering the results presented it is believed that the Ultraprecision grinding showed to be a viable option for the fabrication of components made of tungsten carbide-cobalt with nanometer surface finish possibly eliminating traditional optical manufacturing processes such as lapping and polishing.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-26072016-100144 |
Date | 24 July 2015 |
Creators | Gonçalves, André da Motta |
Contributors | Duduch, Jaime Gilberto |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0027 seconds