Return to search

Physiological Role of Folate Dehydrogenase in One Carbon Metabolism of Escherichia Coli

Thesis addresses the physiological role of formyl tetrahydrofolate synthetase (Fhs) and bifunctional folate dehydrogenase (FolD) in folate mediated one carbon metabolism in bacteria. Thesis consists of 5 chapters. First chapter provides the details of the literature on folate metabolism, enzymes involved the synthesis and physiological roles various folate co-factors. Second chapter discusses the study of Clostridium perfringens Fhs generation of folD deletion in the support of fhs. Third chapter explores the characterization of the folD deletion strain. Fourth chapter presents the characterization of monofunctional versions of FolD from Clostridium perfringens. Fifth chapters talks about anti-correlation existence of Fhs and PurT (phosphoribosyl glycinamide formyl transferase II) The detailed experimental study is discussed below
i. Characterization of Clostridium perfringens Formyl Tetrahydrofolate Synthetase (Fhs)
In this chapter we have characterized Fhs from pathogenic Clostridium perfringens. Fhs catalyzes the formation of N10-formyl THF from THF and formate. Previously Fhs has been characterized from various non-pathogenic species of Clostridium. In addition, the detailed kinetic parameters are not known. In this report we have characterized the Fhs Clostridium perfringens and detailed kinetic parameters were determined. We have also shown the biological function by rescue of UV photorepair sensitive strain.
ii. One-carbon metabolic pathway rewiring in Escherichia coli reveals an evolutionary advantage of 10-formyltetrahydrofolate synthetase (Fhs) in survival under hypoxia
In cells, N10-formyltetrahydrofolate (N10-formyl THF) required for formylation of eubacterial/organeller initiator tRNA and purine biosynthesis is produced by methylene- tetrahydrofolate dehydrogenase/cyclohydrolase (FolD) and/or 10-formyltetrahydrofolate synthetase (Fhs). folD is present in all organisms, where as fhs shows mixed distribution. We show that in E. coli, which naturally lacks fhs, essential function of folD could be replaced with fhs of Clostridium perfringens when provided on a medium copy plasmid or integrated as single copy gene in the chromosome of the ∆folD strains, for their growth in a complex medium. However, these strains require purines and glycine as supplements for growth in M9 minimal medium. The in vivo levels of N10-formyl THF in the ∆folD strains (harboring fhs) were limiting despite their high enzymatic capacity to synthesize the same. Auxotrophy for purines could be alleviated by adding formate to the medium, and that for glycine by engineering THF import into the cells. The ∆folD strains showed high NADP+/NADPH ratio and were hypersensitive to trimethoprim (TMP). Further, the presence of fhs was disadvantageous to E. coli under aerobic growth. However, under hypoxia, E. coli strains harboring fhs outcompeted those lacking it. And, the computational analysis revealed a predominant natural occurrence of fhs in anaerobic and facultative anaerobic bacteria. We also propose that inhibitors aimed at folD could potentiate the effect TMP drugs.
iii. 5, 10-methylene-THF dehydrogenase (DH) and 5, 10-methenyl-THF cyclohydrolase (CH) activities of FolD are essential to maintain folate homeostasis and anti-folate resistance
While E. coli and many other organisms have folD alone or folD and fhs, Clostridium species possess an annotated bi-functional FolD and an annotated methenyl tetrahydrofolate cyclohydrolase (FchA). Simultaneous presence of 3 enzymes for the synthesis of N10-formyl THF was intriguing. To understand this unusual feature we have cloned Clostridium perfringens CpeFolD and CpeFchA, over expressed and purified to near homogeneity. Biochemical analyses revealed that CpeFolD possess only dehydrogenase activity as opposed to in silico prediction, while CpeFchA possess cyclohydrolase activity as expected. We also show that expression of both proteins together allowed folD deletion in E. coli. From this study we found that presence of
dehydrogenase and cyclohydrolase functions are very important in the maintenance of folate homeostasis and anti-folate resistance.
iv. Analysis of distribution of fhs and purT genes in the organisms
While analysing distribution of fhs across genomes, serendipitously we also found that large number of organism which have fhs lack purT(phosphoribosyl glycinamide formyl transferase II), in short where ever purT was present fhs was absent. This kind of anti-correlation was strictly conserved in Bacillus genes as well. Growth competition experiments were done to address anti-correlation between fhs and purT. Growth competition experiments revealed that simultaneous presence of both purT and fhs is disadvantageous, when compared to presence of either one gene.

Identiferoai:union.ndltd.org:IISc/oai:etd.iisc.ernet.in:2005/3667
Date January 2015
CreatorsAluri, Srinivas
ContributorsVarshney, Umesh
Source SetsIndia Institute of Science
Languageen_US
Detected LanguageEnglish
TypeThesis
RelationG26897

Page generated in 0.002 seconds