La phosphorylation oxydative est un processus majeur du métabolisme énergétique qui est catalysée par les enzymes de la chaîne respiratoire (OXPHOS), localisées dans la membrane interne des mitochondries. Sa dérégulation est souvent associée à des pathologies, par exemple aux maladies mitochondriales et neurodégénératives. La régulation de la phosphorylation oxydative par la phosphorylation reste encore peu comprise et peu étudiée. Pourtant, la phosphorylation est une des modifications post-traductionnelles les plus répandues dans la cellule, régulant de nombreux aspects de la vie cellulaire et dont l’altération est associée à des pathologies au niveau cellulaire (Alzheimer, Parkinson, cancer). Concernant la phosphorylation oxydative, il est à noter que quelques sites de phosphorylation des complexes respiratoires, en particulier du complexe IV, ont été montrés comme ayant un effet sur leur stabilité et/ou leur activité. Toutefois la connaissance du phosphoprotéome mitochondrial n’est pas suffisamment documentée à ce jour pour identifier les différents rôles que pourraient jouer la phosphorylation au niveau de la mitochondrie et en particulier, de la chaîne respiratoire. Dans la première partie de la thèse, nous nous sommes intéressés à l’analyse du phosphoprotéome mitochondrial de Saccharomyces cerevisiae dans trois conditions de culture : respiratoire (YLAC), respiro-fermentaire (YPGalA) et fermentaire (YPGA). Nous avons quantifiés près de 300 sites de phosphorylation dans la mitochondrie, dont 90 ont un niveau de phosphorylation variable selon le substrat. Les données que nous avons obtenues constituent une base pour l’analyse de la phosphorylation mitochondriale et de la compréhension de son mécanisme. Les sites de phosphorylation de la voie métabolique énergie sont ceux présentant le plus de variation de leur niveau de phosphorylation. La localisation des résidus phosphorylés sur la structure des complexes respiratoires nous a permis d’émettre des hypothèses sur le rôle de ces résidus. Afin de normaliser la quantité des résidus phosphorylés dans les trois conditions de culture, nous avons aussi quantifié le protéome mitochondrial dans les trois conditions de culture. Ceci nous a permis d’argumenter en faveur d’un métabolisme respiro-fermentaire en YPGalA, question encore largement discutée à ce jour. Enfin, cette première étude quantitative du protéome et phosphoprotéome mitochondrial constitue une avancée dans l’étude de la régulation de la mitochondrie par la phosphorylation. Elle peut notamment apporter des informations applicables à l’étude du cancer : en effet, les cellules saines ont un métabolisme respiratoire tandis que les cellules tumorales, dérégulées, ont un métabolisme fermentaire. La seconde partie de la thèse concerne l’analyse du rôle de deux sous-unités du complexe IV de la chaîne respiratoire : les sous-unités Cox12p et Cox13p, encore peu étudiées à ce jour. De plus, deux sites de phosphorylation ont été identifiés sur la sous-unité Cox12p. Dans un premier temps, nous nous sommes intéressés au rôle de ces sous-unités, notamment au niveau de l’assemblage et de l’activité du complexe IV, en analysant des mutants Δcox12, Δcox13 et Δcox12Δcox13. Dans un deuxième temps, nous nous sommes intéressés au rôle des deux sites de phosphorylation de Cox12p : Ser7 et ser82. Nous avons généré les mutants phosphomimétiques de ces deux résidus et étudié leurs effets sur la stabilité et/ou l’activité du complexe IV. Cette seconde étude nous a notamment permis d’identifier un rôle de Cox12p sur la stabilité du complexe et un rôle de Cox13p dans sa dimérisation. La phosphorylation de Cox12p au niveau de la Ser7 semble aussi déstabiliser le complexe IV. De plus, la phosphorylation de la Ser7 et de la Ser82 semblent influencer l’interaction du cytochrome c avec le complexe IV. Cette hypothèse reste à vérifier mais est pertinente du fait de la proximité de Cox12p avec Cox2p, qui porte le lieu de fixation du cytochrome c. / Mitochondria are the powerhouses of cells, providing energy in the form of adenosine triphosphate (ATP). The synthesis of ATP is achieved by oxidative phosphorylation (OXPHOS), a process catalyzed by the respiratory chain, which is located in the inner membrane of mitochondria. Deregulation of OXPHOS is often associated to diseases. Deregulation is particularly observed in mitochondrial diseases and neurodegenerative diseases, but regulation of respiration by phosphorylation is still poorly understood.However, phosphorylation is one of the most frequent post-translational modifications in the cell, modulating most processes, and defects at a cellular level are observed in some diseases (Alzheimer, Parkinson, cancer). Moreover, some phosphorylation sites have been identified in the respiratory complexes, particularly in the complex IV; some of them have an effect on the stability and/or activity of the complex, but we still lack a comprehensive study about mitochondrial phosphoproteome. Such analysis would be necessary to extend the role of phosphorylation in the regulation of mitochondrial functions in general, and in the regulation of the respiratory chain in particular.In the first part of this thesis, we focused on the analysis of the mitochondrial phosphoproteome of Saccharomyces cerevisiae. We studied the mitochondrial phosphoproteome in three growth conditions: in the respiratory condition (YLAC), in the fermentable condition (YPGA) and in an intermediate one (YPGalA). We quantified around 300 mitochondrial phosphorylation sites in which 90 displayed a different level of phosphorylation according to the substrate. This study is a first step towards understanding mitochondrial phosphorylation and its mechanism. Phosphorylation sites with varying levels of phosphorylation according to their conditions are mostly located on proteins involved in energy metabolism. We localized the phosphosites on the structure of the respiratory complexes when it was possible. This allowed us to make hypotheses on the role of these residues. In order to normalize the quantity of phosphorylation sites in the three growth conditions, we also studied the mitochondrial proteome in the three conditions. These results helped us to understand the energetic metabolism of galactose, which is surely intermediate between respiration and fementation, a question still debated nowadays.Finally this proteomic and phosphoproteomic study is a step forward in the comprehension of regulation of mitochondria by phosphorylation. These results can be used as a model to study cancer cells because they display a deregulation in the energetic metabolism: normal cells display respiratory metabolism whereas cancer cells exhibit fermentable metabolism.The second part of this thesis was the study of two subunits of complex IV of the respiratory chain: Cox12p and Cox13p, which had been poorly studied. Moreover, two phosphorylation sites had been identified in the subunit Cox12p. First we were interested in the role of these two proteins, thus we compared the mitochondria of mutants Δcox12, Δcox13 et Δcox12Δcox13 with wild-type mitochondria. We particularly focused on the assembly and the activity of complex IV. Secondly, we analyzed the role of the two phosphosites of Cox12p: Ser7 and Ser82. We generated phosphomimetic mutants of these two residues and observed their effects on the stability and/or activity of complex IV.All of these results allowed us to identify a role of Cox12p in the stability of complex IV and a role of Cox13p in the dimerization of complex IV. Phosphorylation of Ser7 of Cox12p seemed to destabilize the complex. Moreover phosphorylation of both Ser7 and Ser82 of Cox12p seemed to modify the interaction between cytochrome c and complex IV; this hypothesis remains to be tested but is relevant according to the proximity between Cox12p and the subunit Cox2p, where the cytochrome c interacts.
Identifer | oai:union.ndltd.org:theses.fr/2014PA11T051 |
Date | 13 October 2014 |
Creators | Renvoisé, Margaux |
Contributors | Paris 11, Lemaire, Claire |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.032 seconds