In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has become more common in clean coal power operations with carbon capture and sequestration (CCS). Great efforts have been spent on investigating ways to improve the efficiency, reduce costs, and further reduce greenhouse gas emissions. This study focuses on investigating two approaches to achieve these goals. First, replace the subcritical Rankine steam cycle with a supercritical steam cycle. Second, add different amounts of biomass as feedstock to reduce emissions. Finally, implement several types of CCS, including sweet- and sour-shift pre-combustion and post-combustion.
Using the software, Thermoflow®, this study shows that utilizing biomass with coal up to 50% (wt.) can improve the efficiency, and reduce emissions: even making the plant carbon-negative when CCS is used. CCS is best administered pre-combustion using sour-shift, and supercritical steam cycles are thermally and economically better than subcritical cycles. Both capital and electricity costs have been presented.
Identifer | oai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-2385 |
Date | 17 December 2011 |
Creators | Long, Henry A, III |
Publisher | ScholarWorks@UNO |
Source Sets | University of New Orleans |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of New Orleans Theses and Dissertations |
Page generated in 0.002 seconds