Return to search

N-DOPED MULTIWALLED CARBON NANOTUBES: FUNCTIONALIZATION, CHARACTERIZATION AND APPLICATION IN LI ION BATTERIES

The focus of this dissertation is to utilize chemical functionalization as a probe to investigate the reactivity of N-doped multiwalled carbon nanotubes (N-MWCNTs). The surface of N-MWCNTs, being a set of potentially reactive graphene edges, provides a large number of reactive sites for chemical modification, so considerable changes in chemical and physical properties can be envisaged. We observed that both reduction (dissolving metal reduction/alkylation) and oxidation (H2SO4/HNO3 and H2SO4/KMnO4 mixtures) of N-MWCNTs lead to formation of interesting spiral channels and spiraled carbon nanoribbons. A variety of techniques, including TGA, SEM, TEM, XRD and surface area measurements were used to analyze these new textural changes. We have developed methods to demonstrate that specific chemistry has occurred on these new structures. To this end, we introduced metal-binding ligands that could be used as probes in imaging and spectroscopic techniques including TEM, STEM, EDX, and EELS. A proposal for the underlying structure of N-MWCNTs responsible for the formation of the new textures is presented. We have investigated the performance of our materials as potential negative electrodes for rechargeable lithium ion batteries.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:chemistry_etds-1021
Date01 January 2013
CreatorsKaur, Aman Preet
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations--Chemistry

Page generated in 0.0018 seconds