Return to search

The fabrication and property investigation of graphene and carbon nanotubes hybrid reinforced Al2O3 nanocomposites

In the last decade, carbon nanotubes (CNTs) and Graphene nanoplatelets (GNPs) have attracted a lot of attentions in various polymeric and ceramic composite systems, in an effort to improve their mechanical and functional properties. Al2O3 has attracted considerable interests in ceramics community, in particular as a matrix material for composite fabrications. The high stiffness, excellent thermal stability and chemical resistance of Al2O3 make it practically a very important engineering material, and if we can overcome its brittleness issue, its applications will be much wider. Adding CNTs as a reinforcement to the Al2O3 matrix to improve the toughness is one of the most promising methods. Similarly, GNPs have recently also been shown to be very promising for the same purpose. It has been demonstrated that by adding a mixture of the 2D-GNPs and 1D-CNTs into a polymer matrix, the toughest or strongest man-made ropes have been made. However, the homogenous dispersion of CNTs or GNPs is more of a challenge in a ceramic matrix than in polymeric matrices, owing to the tendency of CNT agglomerations and more steps are needed to completely transfer the useful properties of CNTs and GNPs into ceramics. In this thesis, nanocomposites of Al2O3 reinforced with a hybrid of GNTs (a blend of GNPs and CNTs) were first fabricated. The hybrid GNT reinforcements were mixed with the Al2O3 using a wet chemical technique under ultrasonic treatment. The effects of varied GNT contents on the microstructural features and mechanical properties of the nanocomposites were then investigated. It is found that the well-dispersed GNT fillers resulted in high sintered densities (>99%) in the composites, whilst the fracture mode alteration, grain refinement and improved flexural strength of the composites are all associated with the inclusion of CNTs and GNPs. The average fracture toughness of the nanocomposites reached up to 5.7 MPa·m1/2, against 3.5 MPa·m1/2 of the plain Al2O3, and the flexural strength improved from 360 MPa to 424 MPa respectively, at a hybrid addition of 0.5 wt% GNPs and 1 wt% CNTs. The toughening mechanisms attributed with the unique morphologies and structures of the GNT fillers were also discussed based on analyses on the morphology, grain sizes and fracture mode. The effects of hot-pressing (HP) and spark plasma sintering (SPS) methods on the grain size, microstructural features, and mechanical behaviour of GNT-reinforced Al2O3 nanocomposites were then comprehensively studied. Identical overall reinforcement contents at various GNP/CNT ratios were selected to prepare the composites using both HP and SPS. Highly densified samples (>98%) were obtained at 1650°C under 40 MPa in Ar atmosphere, with dwell times of 1 h and 10 min for HP and SPS respectively. Both types of sample showed a mixture of inter- and trans-granular fracture behaviour. A 50% grain size reduction was observed for samples prepared by HP, compared with the SPS samples. Both types of samples achieved a high flexural strength and fracture toughness of > 400 MPa and 5.5 MPa·m1/2, respectively, whilst the properties of the SPS samples peaked at relatively lower GNT contents than those of the HP samples. Based on analyses of the morphology, grain sizes and fracture mode, similar toughening mechanisms for both types of sample were observed, involving the complex characteristics of the combined GNT fillers. The tribological performance of the HPed pure Al2O3 and its composites containing various hybrid GNT contents was further evaluated under different loading conditions using a ball-on-disc method. Benchmarked against the pure Al2O3, the composite reinforced with a 0.5 wt% GNP exhibited a 23% reduction in the friction coefficient along with a promising 70% wear rate reduction, and a hybrid reinforcement consisting of 0.3 wt.% GNPs + 1 wt.% CNTs resulted in even better performance, with a 86% reduction in the wear rate. The extent of damage to the reinforcement phases caused during wear was studied using Raman spectroscopy. The wear mechanisms for the composites were analysed according to the mechanical properties, brittleness index and microstructural characterization. The combination between GNPs and CNTs contributed to the excellent wear resistance properties for the hybrid GNT-reinforced composites. The GNPs played an important role in the formation of a tribofilm on the worn surface by exfoliation; whereas the CNTs contributed to the improvement in fracture toughness and prevented the grains being pulled out during the tribology test. Finally, Graphene Oxide (GO) was used to replace the GNPs in the hybrid, to prepare Al2O3-GONT nanocomposites, by adopting a new sol-gel processing, in addition to powder mixing. It has been found that sol-gel process leads to an impressive grain size reduction of 62%, the fracture toughness and flexural reached 6.2 MPa·m1/2 and 420 MPa (i.e. 70% and 14% improvement), respectively, than those of pure Al2O3, which even marginally outperformed the previously optimised Al2O3-GNP nanocomposites by 8% in fracture toughness. The success of our new sol-gel strategy opens up new opportunities for choosing hybrid reinforcements for the fabrication of advanced ceramic nanocomposites.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:684096
Date January 2015
CreatorsYazdani, Bahareh
ContributorsZhu, Yanqiu
PublisherUniversity of Exeter
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10871/21140

Page generated in 0.0018 seconds