Return to search

Mechanics of the mitral valve after surgical repair-an in vitro study

Mitral valve disease is widely prevalent among pediatric and adult population across the world, and it encompasses a spectrum of lesions which include congenital valve defects, degenerative valve lesions, and valve dysfunction due to secondary pathologies. Though replacement of the diseased mitral valves with artificial heart valves has been the standard of care until early 1990's, current trends have veered towards complete surgical repair. These trends are encouraging, but current repair techniques are plagued with lack of durability and high rates of failure within 10 years after repair. With increasing number of patients receiving mitral valve repair, there is now an immediate need to understand the mechanisms of repair failure, and assess the role of several clinical risk factors on valve repair. In this thesis, an in vitro pulsatile left heart simulator was developed to mimic the congenital and adult mitral valve pathological morphologies in normal porcine valves, and simulate the pathological valve hemodynamics and mechanics. Different surgical repair techniques were used to correct the valve lesions, and the post repair valve hemodynamics, mechanics and geometry were assessed using quantitative measurement techniques. The extent to which each repair restores physiological valve function and mechanics was assessed, and the impact of different pathological risk factors on repair failure mechanisms was investigated. It is expected that the knowledge from this thesis would play an important role in the evolution of mitral valve surgical repair, and guide the development of more effective and long-lasting heart valve repair technologies.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/39564
Date06 April 2010
CreatorsPadala, Sai Muralidhar
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0018 seconds