Return to search

From Womb to Doom: Mechanical Regulation of Cardiac Tissue Assembly in Morphogenesis and Pathogenesis

The assembly, form, and function of the heart is regulated by complex mechanical signals originating from intrinsic and extrinsic sources, such as the cytoskeleton and the extracellular matrix. During development, mechanical forces influence the self-assembly of highly organized ventricular myocardium. However, mechanical overload induces maladaptive remodeling of tissue structure and eventual failure. Thus, mechanical forces potentiate physiological or pathological remodeling, depending on factors such as frequency and magnitude. We hypothesized that mechanical stimuli in the form of microenvironmental stiffness, cytoskeletal architecture, or cyclic stretch regulate cell-cell junction formation and cytoskeletal remodeling during development and disease. To test this, we engineered cardiac tissues in vitro and quantified structural and functional remodeling over multiple spatial scales in response to diverse mechanical perturbations mimicking development and disease. We first asked if the mechanical microenvironment impacts tissue assembly. To investigate this, we cultured two-cell cardiac µtissues on flexible substrates with tunable stiffness and monitored cell-cell junction formation over time. As myocytes transitioned from isolated cells to interconnected µtissues, focal adhesions disassembled near cell-cell interfaces and mechanical forces were transmitted almost completely through cell-cell junctions. However, µtissues cultured on stiff substrates mimicking fibrotic microenvironments retained focal adhesions near the cell-cell interface, potentially to reinforce the cell-cell junction in response to excessive forces generated by myofibrils in stiff microenvironments. Intercellular electrical conductance between myocytes was measured as a function of connexin 43 immunosignal and the length-to-width ratio of cell pairs. We observed that conductance was correlated to connexin 43 immunosignal and cell pair length-to-width ratio, indicating that tissue architecture can affect electrical coupling. The impact of mechanical overload was also determined by applying chronic cyclic stretch to engineered cardiac tissues. Stretch activated gene expression patterns characteristic of pathological remodeling, including up-regulation of focal adhesion genes, and impacted sarcomere alignment and myocyte shape. Furthermore, chronic cyclic stretch altered intracellular calcium cycling in a manner similar to heart failure and decreased contractile stress generation, suggestive of maladaptive remodeling. In summary, we show that the assembly, form, and function of cardiac tissue is sensitive to a wide range of mechanical cues that emerge during physiological and pathological growth. / Engineering and Applied Sciences

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/10288943
Date January 2012
CreatorsMcCain, Megan Laura
ContributorsParker, Kevin Kit
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsclosed access

Page generated in 0.0023 seconds