Genesis of life begins with the fusion of female and male haploid gametes through a process of fertilization leading to the formation of a diploid cell, the zygote. This undergoes successive cleavage divisions forming 2-, 4- and 8- cell embryos and their individual cells (blastomeres) are totipotent. As development proceeds, there is a gradual restriction in their totipotency, resulting in the generation of two distinct cell lineages i.e., the differentiated trophectoderm (TE) cells and the undifferentiated, inner cell mass (ICM) during blastocyst morphogenesis (Rossant and Tam 2009). During the course of development, the ICM cells can give rise to all cell types of an organism and can also provide embryonic stem (ES)-cells when cultured in vitro (Evan and Kaufman 1981).
ES-cells are pluripotent cells, having the ability to self-renew indefinitely and differentiate into all the three primary germ layers (ectoderm, mesoderm and endoderm) derived-cell types. ES-cells are an excellent developmental model system to understand basic mechanisms of self-renewal, cell differentiation and function of various genes in vitro and in vivo (Capecchi 2001). Importantly, their cell derivatives could potentially be used for experimental cell-based therapy for a number of diseases. Although, human ES-cell lines have been successfully derived and differentiated to various cell types (Thomson et al., 1998; Odorico et al., 2001), their cell-therapeutic potential is far from being tested, in view of the lack of our understanding of lineage-specific differentiation, homing and structural-functional integration of differentiated cell types in the host environment. To understand these mechanisms, it is desirable to have fluorescently-marked ES-cells and their differentiated cell-types, which could facilitate experimental cell transplantation studies.
In this regard, our laboratory has earlier generated enhanced green fluorescent protein (EGFP)-expressing FVB/N transgenic ‘green’ mouse, under the control of ubiquitous chicken -actin promoter (Devgan et al., 2003). This transgenic mouse has been an excellent source of intrinsically green fluorescent cell types. We have been attempting to derive ES-cell line from this transgenic mouse. Because the derivation of ES-cell line is genetic strain-dependent, with some strains being relatively permissible for ES-cell derivation while others are quite resistant (non permissive), it has been extremely difficult to derive ES-cell line from the FVB/N mouse strain. There is a need to evolve experimental strategies to derive ES-cell line from FVB/N mouse, a strain extensively used for transgenesis. Thus, the aims of the study described in the thesis are to: (1) develop an experimental system to derive EGFP-expressing fluorescently-marked ES-cell line from a non-permissive FVB/N mouse strain; (2) characterize the established ES-cell line; (3) achieve differentiation of various cell types from EGFP-expressing ES-cell line and (4) understand role of FGF signaling in cardiac differentiation from the established ES-cell line.
In order to have an appropriate and relevant literature background, the 1st chapter in this thesis describes a comprehensive up-to-date review of literature, pertaining to the early mammalian development and differentiation of blastocyst, followed by origin and properties of ES-cells. Various ES-cell derivation strategies from genetically permissive and non-permissive mouse strains are described and also the ES-cell differentiation potential to various progenitors and differentiated cell types. Subsequently, details on molecular basis of cardiac differentiation and the therapeutic potential of ES-cell derived differentiated cell types to treat disease(s) are described. This chapter is followed by three data chapters (II-IV).
Chapter-II describes the issues related to non-permissiveness of FVB/N strain for ES-cell derivation and strategies to overcome this hurdle. This is followed by detailed results pertaining to generation of homozygous EGFP-expressing transgenic mice and development of a two-pronged ES-cell derivation approach to successfully establish a permanent ES-cell line (named ‘GS-2’ ES-cell line) from the EGFP-transgenic ‘green’ mouse. This chapter also provides results pertaining to detailed characterization of the ‘GS-2’ ES-cell line which includes colony morphology, expansion efficiency, alkaline phosphatase staining, expression analysis of pluripotent markers by RT-PCR and immunostaining approaches and karyotyping. Following this, the outcome of results and significance in the context of reported information are discussed in detail.
Having successfully derived the ‘GS-2’ ES-cell line, it is necessary to thoroughly assess the differentiation competence of the ‘GS-2’ ES-cell line. Therefore, the Chapter-III describes detailed assessment of the in vitro and in vivo differentiation potential of the ‘GS-2’ ES-cell line. For in vitro differentiation, results pertaining to ES-cell derived embryoid body (EB) formation and their differentiation to ectodermal, mesodermal and endodermal cell types, expressing nestin, BMP-4 and α-fetoprotein, respectively, are described. Besides, the robustness of adaptability of ‘GS-2’ ES-cells to various culture conditions for their maintenance and differentiation are described. Also shown in the chapter is the relatively greater propensity of this cell line to cardiac differentiation. For in vivo differentiation, the ‘GS-2’ ES-cell derived teratoma formation in nude mice and its detailed histological analysis showing three germ layer cell types and their derivatives are described. Last part of the data described in this chapter, pertains to generation of chimeric blastocysts by aggregation method.
Because the ‘GS-2’ ES-cell line exhibited a robust differentiation potential, including an efficient cardiomyocyte differentiation, it is of interest to enhance the efficiency of cardiomyocyte differentiation by exogenous addition of one of the key growth factors i.e., FGF8b since this has been implicated to be critical for cardiogenesis in non-mammalian verterbrate species. Therefore, Chapter-IV is focused on assessing the ability of ‘GS-2’ ES-cell line for its cardiomyocyte differentiation property with particular emphasis on the FGF-induced cardiac differentiation. Results pertaining to the expressions of various FGF ligands and their receptors during differentiation of ES-cells are described. Besides, increases in the cardiac efficiency, following FGF8b treatment and the associated up-regulation of cardiac-specific markers such as GATA-4, ISL-1 and α-MHC are shown. At the end of data chapters, separate sections are devoted for ‘Summary and Conclusion’ and for ‘Bibliography’.
Identifer | oai:union.ndltd.org:IISc/oai:etd.ncsi.iisc.ernet.in:2005/2116 |
Date | 06 1900 |
Creators | Singh, Gurbind |
Contributors | Seshagiri, Polani B |
Source Sets | India Institute of Science |
Language | en_US |
Detected Language | English |
Type | Thesis |
Relation | G24873 |
Page generated in 0.0028 seconds