The doping concentration and resistivity of tin doped Gallium arsenide nanowires (GaAs NWs) have been investigated using Hall effect-, 4-probe-, transmission line-, and field effect measurements. Single nanowires were contacted using electron beam lithography followed by thermal evaporation of Au/Ti (900/100 Å). The Sn precursor (TESn) molar ratios of the investigated nanowires were 8.5·10-7, 1.7·10-6, 3.4·10-6 and 6.8·10-6 resulting in doping concentrations ranging from 4.64·1013 to 2.11·1017 cm-3 and resistivities from ~0.01 to ~1 Ωcm. The yield of the device fabrication was 2.4-7.1 % and evaluation of additional samples should be done in order to establish the validity of the results. The contact material was proved to work well with the higher doped samples but non-ohmic, highly resistive behavior was seen in the lower doped devices. A resistivity gradient along the length of the nanowires was found to be present, most likely the result of a doping gradient. The sample series with TESn molar ratio 1.7·10-6 showed more tapering than the other series possibly leading to a highly doped shell, which was indicated by 4-probe measurements.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-105934 |
Date | January 2013 |
Creators | Niklas, Mårtensson |
Publisher | Linköpings universitet, Halvledarmaterial, Linköpings universitet, Tekniska högskolan |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds