We will extend the conjugacy problem of maximal toral subalgebras for Lie algebras of the form $\g{g} \otimes_k R$ by considering $R=k[t,t^{-1}]$ and $R=k[t,t^{-1},(t-1)^{-1}]$, where $k$ is an algebraically closed field of characteristic zero and $\g{g}$ is a direct limit Lie algebra. In the process, we study properties of infinite matrices with entries in a B\'zout domain and we also look at how our conjugacy results extend to universal central extensions of the suitable direct limit Lie algebras.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/26086 |
Date | January 2013 |
Creators | Gontcharov, Aleksandr |
Contributors | Salmasian, Hadi |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0022 seconds