Articular cartilage provides a near frictionless surface for the articulating ends of bones. Cartilage functions to lubricate and transmit compressive forces resulting from joint loading and impact. If damaged, whether by traumatic injury or disease, cartilage lacks the ability for self-repair. This study explores the production of scaffoldree cartilage and investigates the effect of Tissue Growth Technologies’ CartiGen Bioreactor on the cartilage. Chondrocyte and bone marrow-derived stem cell (BMSC) attachment to chitosan is also investigated in hopes of producing a bilayered construct for osteochondral repair. Results demonstrate that culturing of scaffoldree cartilage in the CartiGen bioreactor resulted in an enhancement of the scaffoldree cartilage’s biomechanical and biochemical properties and that the chitosan microspheres were able to successfully support porcine chondrocyte and BMSC attachment. Results from both studies are encouraging for future work involving tissue engineered cartilage.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-5737 |
Date | 07 August 2010 |
Creators | Tran, Scott Chi |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0023 seconds