Return to search

Synthesis of terpenoids using a tandem cationic cascade cyclization-electrophilic aromatic substitution reaction

The terpene and terpenoid family of compounds is considered to be the largest group of natural products. These compounds not only display great diversity in their structural features but are also known to have a multitude of biological activities including but not limited to anti-bacterial, anti-cancer, anti-inflammatory, and anti-HIV properties. Remarkably, all the terpenoids formed in nature come from two molecules viz. isopentenyl pyrophosphate and its isomer, dimethylallyl pyrophosphate both consisting of just five carbons but assembled in many ways. Nature utilizes highly efficient, enzyme-mediated cascade reactions to transform simple linear molecules to more complex cyclic scaffolds.
Cascade or domino reactions are organic chemistry’s most powerful tools that, if executed correctly, mimic the extreme complexity of reactions occurring in nature. Our group has successfully utilized cationic cascade cyclization reactions, to prepare a large library of natural products along with their analogues. It was during the synthesis of one such natural product that it was discovered that a methoxymethyl (MOM) “protecting group” had been transferred within the same molecule. The optimization of this process not only allowed the synthesis of the desired tricyclic framework but also resulted in the liberated MOM group doing an EAS reaction which gave a new C-C bond. This transferred MOM group was further elaborated to different functional groups.
Use of the tandem reaction sequence in an attempt to prepare radulanin E has been described. Total syntheses of two chalcone-based analogous meroterpenoids have been successfully completed using the aforementioned sequence. An advanced intermediate for an entire new class of acridine-based schweinfurthins has been elaborated. The results will be discussed in detail.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-8138
Date01 January 2018
CreatorsShah, Parin Ajay
ContributorsWiemer, David F.
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright © 2018 Parin Ajay Shah

Page generated in 0.0019 seconds