Return to search

New adventures in supported copper nanoparticles

En esta tesis se describe el desarrollo de nuevos sistemas catalíticos basados en nanopartículas de cobre soportadas, el estudio de su biotoxicidad y sus aplicaciones en síntesis orgánica. En el Capítulo 1, se estudia el efecto de las nanopartículas de cobre (NPsCu) sin soporte y con soporte (nuestros sistemas catalíticos) sobre las funciones básicas de las células ováricas. En este sentido, el efecto de la morfología (esférica, triangular y hexagonal) en NPsCu no soportados y el efecto del soporte inorgánico [dióxido de titanio (TiO2), zeolita-Y (ZY) y carbón activo (C)] en las soportadas son evaluadas. Para ello, se analiza la viabilidad celular, la acumulación de PCNA (marcador de proliferación), la acumulación de BAX (marcador de apoptosis) y la liberación de hormonas esteroides (progesterona, testosterona y 17β-estradiol) en células granulosas de ovario porcino. Al analizar los datos de estos experimentos, se concluyen resultados prometedores relacionados con el campo de la reproducción. La viabilidad celular aumenta para todos los NPsCu, con la única excepción de los NPsCu hexagonales sin soporte. Las NPsCu/ZY y las triangulares sin soporte mejoran la proliferación, mientras que las NPsCu esféricas y hexagonales sin soporte, junto con las NPsCu / TiO2, disminuyen la acumulación de PCNA. En relación con la acumulación de BAX, todas las NPsCu reducen la apoptosis excepto las NPsCu/ZY y las NPsCu hexagonales. En general, la liberación de hormonas sexuales es promovida por las NPsCu soportadas en ZY y C, mientras que es inhibida por NPsCu/TiO2. Todos estos resultados apuntan a un impacto directo de la morfología y el soporte de las NPsCu en las funciones de reproducción. Por lo tanto, la modificación adecuada de NPsCu podría ser una herramienta poderosa para el control de los procesos reproductivos. Los siguientes capítulos describen la aplicación de nuestros sistemas catalíticos (basados en nanopartículas de cobre soportadas) en síntesis orgánica, prestando especial atención al acoplamiento cruzado, acoplamiento cruzado deshidrogenante (CDC) y algunas reacciones de oxidación. En el Capítulo 2, se evalúa la actividad catalítica de cuatro catalizadores basados en NPsCu soportados (TiO2, ZY, C y MK-10) en tres reacciones de acoplamiento cruzado, sin paladio ni ligando, para la construcción de enlaces C-C, C-S y C-N. Entre estos catalizadores, NPsCu/ZY es el mejor para la reacción de acoplamiento cruzado de yoduros de arilo y alquinos terminales de Sonogashira, así como en la arilación de tioles, siendo reciclable en ambos casos al menos cuatro veces sin perder actividad catalítica. Por otro lado, NPsCu/TiO2 muestra los mejores resultados para la arilación de los azoles. En este caso, la reciclabilidad del catalizador no es eficaz debido al efecto de envenenamiento de los heterociclos que contienen nitrógeno (imidazol, pirazol, bencimidazol e indol) sobre la superficie del catalizador. Por otro lado, el estudio comparativo de la actividad catalítica de los catalizadores nanoestructurados y catalizadores cobre comerciales, mostró la superioridad de nuestros catalizadores en las tres reacciones de acoplamiento cruzado estudiadas. Así mismo, se describe una alternativa sostenible y más barata a la catálisis de paladio, que muestra un comportamiento similar en este tipo de reacciones de acoplamiento. En el Capítulo 3, se describe y prueba un gran número de catalizadores de NPsCu soportados en el acoplamiento deshidrogenante cruzado de aminas terciarias y alquinos terminales. El catalizador más eficaz fue el basado en NPsCu/ZY en presencia de hidroperóxido de terc-butilo (TBHP) como oxidante a 70 ºC. A diferencia de los trabajos publicados anteriormente, la reacción se lleva a cabo sin la necesidad de una atmósfera inerte, sin disolvente, y utilizando una baja carga de catalizador de 1,5% molar. Se ha preparado una variedad de propargilaminas a partir de N,N-dialquilaminas y alquinos terminales (incluidos los aromáticos y alifáticos, en ambos casos) con rendimientos de moderados a excelentes. El método ha sido igualmente eficaz incluso a una escala de 12 mmol. El catalizador se puede reutilizar en varios ciclos sin pérdida aparente de actividad catalítica y se ha demostrado que es superior a una amplia variedad de catalizadores de cobre disponibles comercialmente. En el Capítulo 4, se evalúa el CDC de 1,2,3,4-tetrahidroisoquinolinas y nitroalcanos catalizados por NPsCu soportadas. Esta reacción es una de las CDC más estudiadas en química orgánica donde, independientemente del catalizador y el modo de activación empleados, hasta ahora solo se habían descrito como productos las correspondientes β-nitroaminas. Se ha observado un comportamiento diferente cuando se ha aplicado nuestro sistema catalítico a este acoplamiento. Se ha descubierto que las NPsCu/TiO2 catalizan los CDC de 1,2,3,4-tetrahidroisoquinolinas (THIQ) y nitroalcanos, lo que conduce a la formación de 5,6-dihidroindolo [2,1-a] isoquinolinas con rendimientos de buenos a excelentes. Debido a este comportamiento particular, se ha realizado un minucioso estudio del mecanismo y se propone un mecanismo de reacción basado en varios experimentos. Se ha descubierto que la reciclabilidad del catalizador es ineficaz, debido al efecto de envenenamiento de los nitrocompuestos sobre la superficie del catalizador. No obstante, la baja carga catalítica empleada (1,5% molar) y el rendimiento superior de nuestro sistema catalítico en comparación con el de los catalizadores de cobre comerciales, respaldan esta metodología como un enfoque sintético ventajoso para la preparación de los compuestos heterocíclicos mencionados anteriormente. Durante el último año de esta tesis, nuestro grupo de investigación decidió pasar de la catálisis heterogénea convencional a la fotocatálisis heterogénea. Para ello, nuestros sistemas catalíticos se han probado en algunas transformaciones orgánicas, empleando la luz como modo de activación. En el Capítulo 5, se comparan una serie de NPsM soportadas sobre titania en la oxidación deshidrogenante de 1,2,3,4-tetrahidroisoquinolinas bajo activación fotocatalítica. El TiO2 solo exhibe la actividad catalítica más alta, lo que permite la formación de las iminas cíclicas correspondientes utilizando una carga de catalizador baja (0,06 M), en agua o acetonitrilo bajo aire. La interacción entre THIQs y TiO2 ha sido analizada por diferentes medios, y los resultados apuntan a la posible formación de un complejo de transferencia de carga. Se requieren más experimentos para evaluar mejor el alcance y el mecanismo de reacción.

Identiferoai:union.ndltd.org:ua.es/oai:rua.ua.es:10045/137432
Date30 November 2020
CreatorsMartín-García, Iris
ContributorsAlonso, Francisco, Universidad de Alicante. Instituto Universitario de Síntesis Orgánica
PublisherUniversidad de Alicante
Source SetsUniversidad de Alicante
LanguageEnglish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis
RightsLicencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0, info:eu-repo/semantics/openAccess

Page generated in 0.0032 seconds