Return to search

Study of Genes Relating To Degradation of Aromatic Compounds and Carbon Metabolism in Mycobacterium Sp. Strain KMS

Polycyclic aromatic hydrocarbons, produced by anthropological and natural activities, are hazardous through formation of oxidative radicals and DNA adducts. Growth of Mycobacterium sp. strain KMS, isolated from a contaminated soil, on the model hydrocarbon pyrene induced specific proteins. My work extends the study of isolate KMS to the gene level to understand the pathways and regulation of pyrene utilization. Genes encoding pyrene-induced proteins were clustered on a 72 kb section on the KMS chromosome but some also were duplicated on plasmids. Skewed GC content and presence of integrase and transposase genes suggested horizontal transfer of pyrene-degrading gene islands that also were found with high conservation in five other pyrene-degrading Mycobacterium isolates. Transcript analysis found both plasmid and chromosomal genes were induced by pyrene. These processes may enhance the survival of KMS in hydrocarbon-contaminated soils when other carbon sources are limited. KMS also grew on benzoate, confirming the functionality of an operon containing genes distinct from those in other benzoate-degrading bacteria. Growth on benzoate but not on pyrene induced a gene, benA, encoding a benzoate dioxygenase α-subunit, but not the pyrene-induced nidA encoding a pyrene dioxygenase α-subunit; the differential induction correlated with differences in promoter sequences. Diauxic growth occurred when pyrene cultures were amended with benzoate or acetate, succinate, or fructose, and paralleled delayed expression of nidA. Single phase growth and normal expression of benA was observed for benzoate single and mixed cultures. The nidA promoters had potential cAMP-CRP binding sites, suggesting that cAMP could be involved in carbon repression of pyrene metabolism. Growth on benzoate and pyrene requires gluconeogenesis. Intermediary metabolism in isolate KMS involves expression from genes encoding a novel malate:quinone oxidoreductase and glyoxylate shunt enzymes. Generation of C3 structures involves transcription of genes encoding malic enzyme, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate synthase. Carbon source modified the transcription patterns for these genes. My findings are the first to show duplication of pyrene-degrading genes on the chromosome and plasmids in Mycobacterium isolates and expression from a unique benzoate-degrading operon. I clarified the routes for intermediary metabolism leading to gluconeogenesis and established a potential role for cAMP-mediated catabolite repression of pyrene utilization.

Identiferoai:union.ndltd.org:UTAHS/oai:http://digitalcommons.usu.edu/do/oai/:etd-2516
Date01 May 2013
CreatorsZhang, Chun
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0027 seconds