According to our previous results, ethephon-induced sweet potato leaf senescence and senescence-associated gene SPCP1 expression was affected by reduced glutathione, EGTA, and cycloheximide (Chen et al., 2009). These data suggest that calcium influx, reactive oxygen species (ROS) and de novo synthesized proteins can affect ethephon-mediated effects. Therefore, PCR-selective substractive hybridization and RACE-PCR methods were used to clone 5 full-length cDNAs encoded putative calmodulin (SPCAM), catalase (SPCATA), anionic peroxidase (SPPA), ACC oxidase (SPACO), and DSS1-like protein (SPDSS1) from mixed samples of ethephon-treated leaves for 6 and 24 hours. The ORF of SPCAM contains 450 nucleotides and encodes 149 amino acids. There are 4 putative EF-motifs in the deduced protein structure. SPCAM exhibited amino acid sequence identity with isolated Arabidopsis calmodulins from 48% to 100%, and was completely the same as CaM7 calmodulin. The ORF of SPCATA contains 1479 nucleotides and encodes 492 amino acids. SPCAM exhibited high amino acid sequence identity with other plant catalases from 71.2% to 80.9%, and had the highest identity with mangrove catalase. The ORF of SPPA contains 1068 nucleotides and encodes 355 amino acids. SPPA exhibited amino acid sequence identity with other published sweet potato peroxidase isoforms from 28.7% to 97.5%, and had the highest identity with anionic peroxidase SWPA4. The ORF of SPACO contains 930 nucleotides and encodes 309 amino acids. SPACO exhibited high amino acid sequence identity with other plant ACC oxidases from 62.3% to 81.5%, and had the highest identity with tobacco ACC oxidase. The ORF of SPDSS1 contains 228 nucleotides and encodes 75 amino acids. SPDSS1 exhibited amino acid sequence identity with other DSS1 from 25.2% to 62.3%, and had the highest identity with maize DSS1. The chlorophyll contents and Fv/Fm values were significantly reduced, however, the isolated gene expression was remarkably enhanced in natural senescent leaves. DAB staining showed that H2O2 amount was remarkably elevated at S3 senescent leaves compared to leaves of the other developmental stages. Evan blue staining also demonstrated that S3 senescent leaf had more cell death compared to S0 young leaves. In addition ethephon-induced leaf senescence exhibited similar results. The chlorophyll contents and Fv/Fm values were significantly reduced, however, the isolated gene expression was remarkably enhanced in ethephon-treated leaves compared to dark control. DAB staining showed that H2O2 amount was remarkably elevated at 72 hours in ethephon-treated leaves compared to dark control. Evan blue staining also demonstrated that ethephon-treated leaf for 72 hours had more cell death compared to dark control. Based on these data we conclude that SPCAM, SPCATA, SPPA, SPACO and SPDSS1 gene expression were significantly increased in natural and ethephon-induced senescent leaves. The possible functions of these isolated genes in association with events in ethephon-induced leaf senescence, including calcium influx, ROS elevation or scavenge, and following signaling will be discussed.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0125110-175807 |
Date | 25 January 2010 |
Creators | Wu, Hsin-tai |
Contributors | Zin-Huang Liu, Hsien-Jung Chen, Guan-jhong Huang |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0125110-175807 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.0022 seconds