Return to search

Development of bimetallic Pd-Zn catalysts for methanol steam reforming: hydrogen production for fuel cells

Proton exchange membrane fuel cell (PEMFC) has been reported as clean and efficient energy technology from conversion of H₂. However, one of the main challenges remains the storage and transport of hydrogen. The promising alternative is to produce H₂ on site by a reformer using a H₂-dense liquid as a fuel, a technology known as fuel processing. Methanol is an attractive source of H₂ compared to other fuels as it presents several advantages, i.e. it is obtained sulphur-free, has a high H to C ratio and therefore produces a H₂-rich reformate, can be reformed at low temperatures (200 - 300°C) and is a liquid at ambient conditions so that it can be easily handled. Typically, Cu-based catalysts are used for steam reforming of methanol due to their high activity (i.e. H₂ production) and high selectivity towards CO₂. As CO poisons anodic catalyst of PEMFC, high selectivity towards CO₂ is crucial so as to eliminate or at least minimize CO removal load downstream a fuel processor. However, Cubased catalysts are thermally unstable and suffer deactivation due to sintering at high temperatures (> 250°C). Moreover, Cu-based catalysts are pyrophoric and therefore difficult to handle. Recent studies show that PdZn catalysts are very promising as they exhibit comparable activity and selectivity to Cu-based ones. Furthermore, PdZn catalysts are thermally stable in the typically methanol steam reforming temperature range (200 - 300°C). Most literature attributes high CO₂ selectivity of PdZn catalysts to formation of PdZn alloy. It is generally agreed that PdZn alloy is formed when PdZn catalysts are reduced in H₂ at high temperatures (> 250°C). In this work, a Pd/ZnO catalyst aimed at 2.5 wt% Pd was successfully prepared via incipient wetness impregnation and the duplicate preparation of the catalyst was successful. Both impregnation catalysts were confirmed by ICP-OES to contain similar weight Pd loadings i.e. 2.8 and 2.7 wt%, respectively. The actual Pd loading (ICP-OES) was slightly higher than the target loading (2.5 wt%) due to Pd content of Pd salt underestimated during catalyst preparation. Furthermore, crystallite size distribution, i.e. PdO crystallites on ZnO support, was similar (i.e. 6.7 ± 2.4 nm and 6.3 ± 1.9 nm) for both impregnation catalysts.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uct/oai:localhost:11427/24325
Date January 2015
CreatorsXalabile, Philasande
ContributorsFletcher, Jack, Luchters, Niels, Malatji, Peter
PublisherUniversity of Cape Town, Faculty of Engineering and the Built Environment, Centre for Catalysis Research
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeMaster Thesis, Masters, MSc (Eng)
Formatapplication/pdf

Page generated in 0.0021 seconds