Return to search

A Low-Level USV Controller Incorporating an Environmental Disturbance Observer

Modeling, system identification and controller design for a 16’ catamaran is
described with the objective of enhanced operation in the presence of environmental
disturbances including wind, waves and current. The vehicle is fully-actuated in surge,
sway and yaw degrees of freedom. Analytical and experimental system identification is
carried out to create a numerical model of the vehicle. A composite system of a Multiinput
multi-output Proportional-Derivative (PD) controller and a nonlinear disturbance
observer is used for station-keeping and transiting modes of operation. A waypoint
transiting algorithm is developed to output heading and cross-track error from vehicle
position and waypoints. A control allocation method is designed to lower azimuthing
frequency and incorporate angle saturation and rate limits. Validation is achieved with
improvement in simulation with the addition of the nonlinear observer. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_40797
ContributorsDiddams, Michael Albert (author), Dhanak, Manhar R. (Thesis advisor), Florida Atlantic University (Degree grantor), College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text
Format89 p., application/pdf
RightsCopyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0037 seconds