Return to search

The role of Uncertainty in Categorical Perception Utilizing Statistical Learning in Robots

At the heart of statistical learning lies the concept of uncertainty.
Similarly, embodied agents such as robots
and animals must likewise address uncertainty, as sensation
is always only a partial reflection of reality. This
thesis addresses the role that uncertainty can play in
a central building block of intelligence: categorization.
Cognitive agents are able to perform tasks like categorical perception
through physical interaction (active categorical perception; ACP),
or passively at a distance (distal categorical perception; DCP).
It is possible that the former scaffolds the learning of
the latter. However, it is unclear whether DCP indeed scaffolds
ACP in humans and animals, nor how a robot could be trained
to likewise learn DCP from ACP. Here we demonstrate a method
for doing so which involves uncertainty: robots perform
ACP when uncertain and DCP when certain.
Furthermore, we demonstrate that robots trained
in such a manner are more competent at categorizing novel
objects than robots trained to categorize in other ways.
This suggests that such a mechanism would also be
useful for humans and animals, suggesting that they
may be employing some version of this mechanism.

Identiferoai:union.ndltd.org:uvm.edu/oai:scholarworks.uvm.edu:graddis-1580
Date01 January 2016
CreatorsPowell, Nathaniel V.
PublisherScholarWorks @ UVM
Source SetsUniversity of Vermont
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate College Dissertations and Theses

Page generated in 0.002 seconds