Return to search

Categorical quantum dynamics

Since their original introduction, strongly complementary observables have been a fundamental ingredient of the ZX calculus, one of the most successful fragments of Categorical Quantum Mechanics (CQM). In this thesis, we show that strong complementarity plays a vastly greater role in quantum theory. Firstly, we use strong complementarity to introduce dynamics and symmetries within the framework of CQM, which we also extend to infinite-dimensional separable Hilbert spaces: these were long-missing features, which open the way to a wealth of new applications. The coherent treatment presented in this work also provides a variety of novel insights into the dynamics and symmetries of quantum systems: examples include the extremely simple characterisation of symmetry-observable duality, the connection of strong complementarity with the Weyl Canonical Commutation Relations, the generalisations of Feynman's clock construction, the existence of time observables and the emergence of quantum clocks. Secondly, we show that strong complementarity is a key resource for quantum algorithms and protocols. We provide the first fully diagrammatic, theory-independent proof of correctness for the quantum algorithm solving the Hidden Subgroup Problem, and show that strong complementarity is the feature providing the quantum advantage. In quantum foundations, we use strong complementarity to derive the exact conditions relating non-locality to the structure of phase groups, within the context of Mermin-type non-locality arguments. Our non-locality results find further application to quantum cryptography, where we use them to define a quantum-classical secret sharing scheme with provable device-independent security guarantees. All in all, we argue that strong complementarity is a truly powerful and versatile building block for quantum theory and its applications, and one that should draw a lot more attention in the future.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:748667
Date January 2016
CreatorsGogioso, Stefano
ContributorsCoecke, Bob
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:cbfb821f-6b76-4a81-b882-17b9ca386264

Page generated in 0.0021 seconds