Return to search

Lie 2-algebras as Homotopy Algebras Over a Quadratic Operad

We begin by discussing motivation for our consideration of a structure called a Lie 2-algebra, in particular an important class of Lie 2-algebras are the Courant Algebroids introduced in 1990 by Courant. We wish to attach some natural definitions from operad theory, mainly the notion of a module over an algebra, to Lie 2-algebras and hence to Courant algebroids. To this end our goal is to show that Lie 2-algebras can be described as what are called \emph{homotopy algebras over an operad}. Describing Lie 2-algebras using operads also solves the problem of showing that the equations defining a Lie 2-algebra are consistent.

Our technical discussion begins by introducing some notions from operad theory, which is a generalization of the theory of operations on a set and their compositions. We define the idea of a quadratic operad and a homotopy algebra over a quadratic operad. We then proceed to describe Lie 2-algebras as homotopy algebras over a given quadratic operad using a theorem of Ginzburg and Kapranov.

Next we briefly discuss the structure of a braided monoidal category. Following this, motivated by our discussion of braided monoidal categories, a new structure is introduced, which we call a commutative 2-algebra. As with the Lie 2-algebra case we show how a commutative 2-algebra can be seen as a homotopy algebra over a particular quadratic operad.

Finally some technical results used in previous theorems are mentioned. In discussing these technical results we apply some ideas about distributive laws and Koszul operads.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/31946
Date11 January 2012
CreatorsSquires, Travis
ContributorsArkhipov, Sergey
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.002 seconds